These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 25925138)
1. Interfacing microbial styrene production with a biocompatible cyclopropanation reaction. Wallace S; Balskus EP Angew Chem Int Ed Engl; 2015 Jun; 54(24):7106-9. PubMed ID: 25925138 [TBL] [Abstract][Full Text] [Related]
3. Non-natural olefin cyclopropanation catalyzed by diverse cytochrome P450s and other hemoproteins. Heel T; McIntosh JA; Dodani SC; Meyerowitz JT; Arnold FH Chembiochem; 2014 Nov; 15(17):2556-62. PubMed ID: 25294253 [TBL] [Abstract][Full Text] [Related]
4. Highly Diastereo- and Enantioselective Synthesis of Nitrile-Substituted Cyclopropanes by Myoglobin-Mediated Carbene Transfer Catalysis. Chandgude AL; Fasan R Angew Chem Int Ed Engl; 2018 Nov; 57(48):15852-15856. PubMed ID: 30300955 [TBL] [Abstract][Full Text] [Related]
5. Cyclopropanations via Heme Carbenes: Basic Mechanism and Effects of Carbene Substituent, Protein Axial Ligand, and Porphyrin Substitution. Wei Y; Tinoco A; Steck V; Fasan R; Zhang Y J Am Chem Soc; 2018 Feb; 140(5):1649-1662. PubMed ID: 29268614 [TBL] [Abstract][Full Text] [Related]
6. Highly diastereoselective and enantioselective olefin cyclopropanation using engineered myoglobin-based catalysts. Bordeaux M; Tyagi V; Fasan R Angew Chem Int Ed Engl; 2015 Feb; 54(6):1744-8. PubMed ID: 25538035 [TBL] [Abstract][Full Text] [Related]
7. Studies of asymmetric styrene cyclopropanation with a rhodium(II) metallopeptide catalyst developed with a high-throughput screen. Sambasivan R; Ball ZT Chirality; 2013 Sep; 25(9):493-7. PubMed ID: 23749505 [TBL] [Abstract][Full Text] [Related]
8. Olefin cyclopropanation via carbene transfer catalyzed by engineered cytochrome P450 enzymes. Coelho PS; Brustad EM; Kannan A; Arnold FH Science; 2013 Jan; 339(6117):307-10. PubMed ID: 23258409 [TBL] [Abstract][Full Text] [Related]
9. Designer Micelles Accelerate Flux Through Engineered Metabolism in E. coli and Support Biocompatible Chemistry. Wallace S; Balskus EP Angew Chem Int Ed Engl; 2016 May; 55(20):6023-7. PubMed ID: 27061024 [TBL] [Abstract][Full Text] [Related]
10. 'Carbene radicals' in Co(II)(por)-catalyzed olefin cyclopropanation. Dzik WI; Xu X; Zhang XP; Reek JN; de Bruin B J Am Chem Soc; 2010 Aug; 132(31):10891-902. PubMed ID: 20681723 [TBL] [Abstract][Full Text] [Related]
11. Palladium(II) carboxylates and palladium(I) carbonyl carboxylate complexes as catalysts for olefin cyclopropanation with ethyl diazoacetate. Shishilov ON; Stromnova TA; Cámpora J; Palma P; Cartes MA; Martínez-Prieto LM Dalton Trans; 2009 Sep; (33):6626-33. PubMed ID: 19672507 [TBL] [Abstract][Full Text] [Related]
13. Catalytic C(sp Griffin JR; Wendell CI; Garwin JA; White MC J Am Chem Soc; 2017 Oct; 139(39):13624-13627. PubMed ID: 28898063 [TBL] [Abstract][Full Text] [Related]
14. Enantioselective cyclopropanation of enals by oxidative N-heterocyclic carbene catalysis. Biswas A; De Sarkar S; Tebben L; Studer A Chem Commun (Camb); 2012 May; 48(42):5190-2. PubMed ID: 22513712 [TBL] [Abstract][Full Text] [Related]
15. Alkene cyclopropanation catalyzed by Halterman iron porphyrin: participation of organic bases as axial ligands. Lai TS; Chan FY; So PK; Ma DL; Wong KY; Che CM Dalton Trans; 2006 Oct; (40):4845-51. PubMed ID: 17033710 [TBL] [Abstract][Full Text] [Related]
16. Engineering a dirhodium artificial metalloenzyme for selective olefin cyclopropanation. Srivastava P; Yang H; Ellis-Guardiola K; Lewis JC Nat Commun; 2015 Jul; 6():7789. PubMed ID: 26206238 [TBL] [Abstract][Full Text] [Related]
17. Engineering of RuMb: Toward a Green Catalyst for Carbene Insertion Reactions. Wolf MW; Vargas DA; Lehnert N Inorg Chem; 2017 May; 56(10):5623-5635. PubMed ID: 28443661 [TBL] [Abstract][Full Text] [Related]
18. Complete integration of carbene-transfer chemistry into biosynthesis. Huang J; Quest A; Cruz-Morales P; Deng K; Pereira JH; Van Cura D; Kakumanu R; Baidoo EEK; Dan Q; Chen Y; Petzold CJ; Northen TR; Adams PD; Clark DS; Balskus EP; Hartwig JF; Mukhopadhyay A; Keasling JD Nature; 2023 May; 617(7960):403-408. PubMed ID: 37138074 [TBL] [Abstract][Full Text] [Related]
19. Redox Engineering of Myoglobin by Cofactor Substitution to Enhance Cyclopropanation Reactivity. Kagawa Y; Oohora K; Himiyama T; Suzuki A; Hayashi T Angew Chem Int Ed Engl; 2024 Sep; 63(36):e202403485. PubMed ID: 38780472 [TBL] [Abstract][Full Text] [Related]