These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 25925138)

  • 61. NADH availability limits asymmetric biocatalytic epoxidation in a growing recombinant Escherichia coli strain.
    Bühler B; Park JB; Blank LM; Schmid A
    Appl Environ Microbiol; 2008 Mar; 74(5):1436-46. PubMed ID: 18192422
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Diastereodivergent synthesis of 3-spirocyclopropyl-2-oxindoles through direct enantioselective cyclopropanation of oxindoles.
    Dou X; Lu Y
    Chemistry; 2012 Jul; 18(27):8315-9. PubMed ID: 22674465
    [No Abstract]   [Full Text] [Related]  

  • 63. Synthesis of chiral 3-substituted hexahydropyrroloindoline via intermolecular cyclopropanation.
    Song H; Yang J; Chen W; Qin Y
    Org Lett; 2006 Dec; 8(26):6011-4. PubMed ID: 17165917
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Nucleophilic heterocyclic carbene as a novel catalyst for cyclopropanation of cyano acrylates.
    Raveendran AE; Paul RR; Suresh E; Nair V
    Org Biomol Chem; 2010 Feb; 8(4):901-5. PubMed ID: 20135050
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Formal Diels-Alder reactions of chalcones and formylcyclopropanes catalyzed by chiral N-heterocyclic carbenes.
    Lv H; Mo J; Fang X; Chi YR
    Org Lett; 2011 Oct; 13(19):5366-9. PubMed ID: 21877756
    [TBL] [Abstract][Full Text] [Related]  

  • 66. N-Heterocyclic-carbene-catalyzed reaction of α-bromo-α,β-unsaturated aldehyde or α,β-dibromoaldehyde with isatins: an efficient synthesis of spirocyclic oxindole-dihydropyranones.
    Yao C; Xiao Z; Liu R; Li T; Jiao W; Yu C
    Chemistry; 2013 Jan; 19(2):456-9. PubMed ID: 23225526
    [No Abstract]   [Full Text] [Related]  

  • 67. Titanium carbenoid-mediated cyclopropanation of allylic alcohols: selectivity and mechanism.
    Durán-Peña MJ; Botubol-Ares JM; Hanson JR; Hernández-Galán R; Collado IG
    Org Biomol Chem; 2015 Jun; 13(22):6325-32. PubMed ID: 25968250
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Phase transfer catalyzed enantioselective cyclopropanation of 4-nitro-5-styrylisoxazoles.
    Del Fiandra C; Piras L; Fini F; Disetti P; Moccia M; Adamo MF
    Chem Commun (Camb); 2012 Apr; 48(32):3863-5. PubMed ID: 22407508
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Preparation of enolate-homoenolate species as (Z)-gamma-siloxyallylmetal equivalents: sequential 1,4-addition of bis(iodozincio)methane to 1,4-dicarbonylbutenes and cyclopropanation.
    Hirayama T; Oshima K; Matsubara S
    Angew Chem Int Ed Engl; 2005 May; 44(21):3293-6. PubMed ID: 15844119
    [No Abstract]   [Full Text] [Related]  

  • 70. A non-cross-linked soluble polystyrene-supported ruthenium catalyst for carbenoid transfer reactions.
    Choi MK; Yu WY; So MH; Zhou CY; Deng QH; Che CM
    Chem Asian J; 2008 Sep; 3(8-9):1256-65. PubMed ID: 18655066
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Fighting Fenton Chemistry: A Highly Active Iron(III) Tetracarbene Complex in Epoxidation Catalysis.
    Kück JW; Anneser MR; Hofmann B; Pöthig A; Cokoja M; Kühn FE
    ChemSusChem; 2015 Dec; 8(23):4056-63. PubMed ID: 26580492
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Designing N-heterocyclic carbenes: simultaneous enhancement of reactivity and enantioselectivity in the asymmetric hydroacylation of cyclopropenes.
    Liu F; Bugaut X; Schedler M; Fröhlich R; Glorius F
    Angew Chem Int Ed Engl; 2011 Dec; 50(52):12626-30. PubMed ID: 22058006
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Olefin cyclopropanation by a sequential atom-transfer radical addition and dechlorination in the presence of a ruthenium catalyst.
    Thommes K; Kiefer G; Scopelliti R; Severin K
    Angew Chem Int Ed Engl; 2009; 48(43):8115-9. PubMed ID: 19784992
    [No Abstract]   [Full Text] [Related]  

  • 74. Tandem enyne metathesis-Diels-Alder reaction for construction of natural product frameworks.
    Rosillo M; Domínguez G; Casarrubios L; Amador U; Pérez-Castells J
    J Org Chem; 2004 Mar; 69(6):2084-93. PubMed ID: 15058956
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Designing RNA-based genetic control systems for efficient production from engineered metabolic pathways.
    Stevens JT; Carothers JM
    ACS Synth Biol; 2015 Feb; 4(2):107-15. PubMed ID: 25314371
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Cell-free styrene biosynthesis at high titers.
    Grubbe WS; Rasor BJ; Krüger A; Jewett MC; Karim AS
    Metab Eng; 2020 Sep; 61():89-95. PubMed ID: 32502620
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Hybrid ruthenium ROMP catalysts based on an engineered variant of β-barrel protein FhuA ΔCVF(tev) : effect of spacer length.
    Sauer DF; Bocola M; Broglia C; Arlt M; Zhu LL; Brocker M; Schwaneberg U; Okuda J
    Chem Asian J; 2015 Jan; 10(1):177-82. PubMed ID: 25425216
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Divergent Reactivity of Rhodium(I) Carbenes Derived from Indole Annulations.
    Li X; Li H; Song W; Tseng PS; Liu L; Guzei IA; Tang W
    Angew Chem Int Ed Engl; 2015 Oct; 54(44):12905-8. PubMed ID: 26480329
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Chemoselective Cyclopropanation over Carbene Y-H Insertion Catalyzed by an Engineered Carbene Transferase.
    Moore EJ; Steck V; Bajaj P; Fasan R
    J Org Chem; 2018 Jul; 83(14):7480-7490. PubMed ID: 29905476
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Transition Metal-Free Reduction of Activated Alkenes Using a Living Microorganism.
    Brewster RC; Suitor JT; Bennett AW; Wallace S
    Angew Chem Int Ed Engl; 2019 Sep; 58(36):12409-12414. PubMed ID: 31286626
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.