These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 25925158)
1. Input strategy analysis for an air quality data modelling procedure at a local scale based on neural network. Ragosta M; D'Emilio M; Giorgio GA Environ Monit Assess; 2015 May; 187(5):307. PubMed ID: 25925158 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of a multiple regression model for the forecasting of the concentrations of NOx and PM10 in Athens and Helsinki. Vlachogianni A; Kassomenos P; Karppinen A; Karakitsios S; Kukkonen J Sci Total Environ; 2011 Mar; 409(8):1559-71. PubMed ID: 21277004 [TBL] [Abstract][Full Text] [Related]
3. The impact of the congestion charging scheme on air quality in London. Part 1. Emissions modeling and analysis of air pollution measurements. Kelly F; Anderson HR; Armstrong B; Atkinson R; Barratt B; Beevers S; Derwent D; Green D; Mudway I; Wilkinson P; Res Rep Health Eff Inst; 2011 Apr; (155):5-71. PubMed ID: 21830496 [TBL] [Abstract][Full Text] [Related]
4. Intercomparison of air quality data using principal component analysis, and forecasting of PM₁₀ and PM₂.₅ concentrations using artificial neural networks, in Thessaloniki and Helsinki. Voukantsis D; Karatzas K; Kukkonen J; Räsänen T; Karppinen A; Kolehmainen M Sci Total Environ; 2011 Mar; 409(7):1266-76. PubMed ID: 21276603 [TBL] [Abstract][Full Text] [Related]
5. [Application of artificial neural networks on the prediction of surface ozone concentrations]. Shen LL; Wang YX; Duan L Huan Jing Ke Xue; 2011 Aug; 32(8):2231-5. PubMed ID: 22619942 [TBL] [Abstract][Full Text] [Related]
6. Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation. Li X; Peng L; Yao X; Cui S; Hu Y; You C; Chi T Environ Pollut; 2017 Dec; 231(Pt 1):997-1004. PubMed ID: 28898956 [TBL] [Abstract][Full Text] [Related]
7. Forecasting PM10 in metropolitan areas: Efficacy of neural networks. Fernando HJ; Mammarella MC; Grandoni G; Fedele P; Di Marco R; Dimitrova R; Hyde P Environ Pollut; 2012 Apr; 163():62-7. PubMed ID: 22325432 [TBL] [Abstract][Full Text] [Related]
8. ANN application for prediction of atmospheric nitrogen deposition to aquatic ecosystems. Palani S; Tkalich P; Balasubramanian R; Palanichamy J Mar Pollut Bull; 2011 Jun; 62(6):1198-206. PubMed ID: 21481425 [TBL] [Abstract][Full Text] [Related]
9. Potential assessment of a neural network model with PCA/RBF approach for forecasting pollutant trends in Mong Kok urban air, Hong Kong. Lu WZ; Wang WJ; Wang XK; Yan SH; Lam JC Environ Res; 2004 Sep; 96(1):79-87. PubMed ID: 15261787 [TBL] [Abstract][Full Text] [Related]
10. LaSVM-based big data learning system for dynamic prediction of air pollution in Tehran. Ghaemi Z; Alimohammadi A; Farnaghi M Environ Monit Assess; 2018 Apr; 190(5):300. PubMed ID: 29679160 [TBL] [Abstract][Full Text] [Related]
11. Forecasting PM10 in Algiers: efficacy of multilayer perceptron networks. Abderrahim H; Chellali MR; Hamou A Environ Sci Pollut Res Int; 2016 Jan; 23(2):1634-41. PubMed ID: 26381787 [TBL] [Abstract][Full Text] [Related]
12. A hybrid model for PM₂.₅ forecasting based on ensemble empirical mode decomposition and a general regression neural network. Zhou Q; Jiang H; Wang J; Zhou J Sci Total Environ; 2014 Oct; 496():264-274. PubMed ID: 25089688 [TBL] [Abstract][Full Text] [Related]
13. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis. Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ; Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949 [TBL] [Abstract][Full Text] [Related]
14. Using improved neural network model to analyze RSP, NOx and NO2 levels in urban air in Mong Kok, Hong Kong. Lu WZ; Wang WJ; Wang XK; Xu ZB; Leung AY Environ Monit Assess; 2003 Sep; 87(3):235-54. PubMed ID: 12952354 [TBL] [Abstract][Full Text] [Related]
15. Impact of the 1990 Hong Kong legislation for restriction on sulfur content in fuel. Wong CM; Rabl A; Thach TQ; Chau YK; Chan KP; Cowling BJ; Lai HK; Lam TH; McGhee SM; Anderson HR; Hedley AJ Res Rep Health Eff Inst; 2012 Aug; (170):5-91. PubMed ID: 23316618 [TBL] [Abstract][Full Text] [Related]
16. Mapping real-time air pollution health risk for environmental management: Combining mobile and stationary air pollution monitoring with neural network models. Adams MD; Kanaroglou PS J Environ Manage; 2016 Mar; 168():133-41. PubMed ID: 26706225 [TBL] [Abstract][Full Text] [Related]
17. Prediction of air pollutant concentration based on sparse response back-propagation training feedforward neural networks. Ding W; Zhang J; Leung Y Environ Sci Pollut Res Int; 2016 Oct; 23(19):19481-94. PubMed ID: 27384165 [TBL] [Abstract][Full Text] [Related]
18. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States. Paciorek CJ; Liu Y; Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153 [TBL] [Abstract][Full Text] [Related]
19. Forecasting of daily total atmospheric ozone in Isfahan. Yazdanpanah H; Karimi M; Hejazizadeh Z Environ Monit Assess; 2009 Oct; 157(1-4):235-41. PubMed ID: 18843548 [TBL] [Abstract][Full Text] [Related]
20. Prediction of ambient PM10 and toxic metals using artificial neural networks. Chelani AB; Gajghate DG; Hasan MZ J Air Waste Manag Assoc; 2002 Jul; 52(7):805-10. PubMed ID: 12139345 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]