BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 25925165)

  • 1. When do confounding by indication and inadequate risk adjustment bias critical care studies? A simulation study.
    Sjoding MW; Luo K; Miller MA; Iwashyna TJ
    Crit Care; 2015 Apr; 19(1):195. PubMed ID: 25925165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observational Research for Therapies Titrated to Effect and Associated With Severity of Illness: Misleading Results From Commonly Used Statistical Methods.
    de Grooth HJ; Girbes ARJ; van der Ven F; Oudemans-van Straaten HM; Tuinman PR; de Man AME
    Crit Care Med; 2020 Dec; 48(12):1720-1728. PubMed ID: 33009100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationship among obesity, nutritional status, and mortality in the critically ill.
    Robinson MK; Mogensen KM; Casey JD; McKane CK; Moromizato T; Rawn JD; Christopher KB
    Crit Care Med; 2015 Jan; 43(1):87-100. PubMed ID: 25289931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of instrumental variable analysis using a new instrument with risk adjustment methods to reduce confounding by indication.
    Fang G; Brooks JM; Chrischilles EA
    Am J Epidemiol; 2012 Jun; 175(11):1142-51. PubMed ID: 22510277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The association of red cell distribution width at hospital discharge and out-of-hospital mortality following critical illness*.
    Purtle SW; Moromizato T; McKane CK; Gibbons FK; Christopher KB
    Crit Care Med; 2014 Apr; 42(4):918-29. PubMed ID: 24448196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nutritional Status and Mortality in the Critically Ill.
    Mogensen KM; Robinson MK; Casey JD; Gunasekera NS; Moromizato T; Rawn JD; Christopher KB
    Crit Care Med; 2015 Dec; 43(12):2605-15. PubMed ID: 26427592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adjusted Analyses in Studies Addressing Therapy and Harm: Users' Guides to the Medical Literature.
    Agoritsas T; Merglen A; Shah ND; O'Donnell M; Guyatt GH
    JAMA; 2017 Feb; 317(7):748-759. PubMed ID: 28241362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pediatric Index of Cardiac Surgical Intensive Care Mortality Risk Score for Pediatric Cardiac Critical Care.
    Jeffries HE; Soto-Campos G; Katch A; Gall C; Rice TB; Wetzel R
    Pediatr Crit Care Med; 2015 Nov; 16(9):846-52. PubMed ID: 26196254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interpreting treatment-effect estimates with heterogeneity and choice: simulation model results.
    Brooks JM; Fang G
    Clin Ther; 2009 Apr; 31(4):902-19. PubMed ID: 19446162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Risk adjustment and outcome research. Part I.
    Arcà M; Fusco D; Barone AP; Perucci CA
    J Cardiovasc Med (Hagerstown); 2006 Sep; 7(9):682-90. PubMed ID: 16932082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The association between primary language spoken and all-cause mortality in critically ill patients.
    Mendu ML; Zager S; Moromizato T; McKane CK; Gibbons FK; Christopher KB
    J Crit Care; 2013 Dec; 28(6):928-34. PubMed ID: 24011755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How unmeasured confounding in a competing risks setting can affect treatment effect estimates in observational studies.
    Barrowman MA; Peek N; Lambie M; Martin GP; Sperrin M
    BMC Med Res Methodol; 2019 Jul; 19(1):166. PubMed ID: 31366331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation study comparing exposure matching with regression adjustment in an observational safety setting with group sequential monitoring.
    Stratton KG; Cook AJ; Jackson LA; Nelson JC
    Stat Med; 2015 Mar; 34(7):1117-33. PubMed ID: 25510526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transferring critically ill patients out of hospital improves the standardized mortality ratio: a simulation study.
    Kahn JM; Kramer AA; Rubenfeld GD
    Chest; 2007 Jan; 131(1):68-75. PubMed ID: 17218558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Introduction to risk adjustment methods in comparative evaluation of outcomes].
    Arcà M; Fusco D; Barone AP; Perucci CA
    Epidemiol Prev; 2006; 30(4-5 Suppl):5-47. PubMed ID: 17361834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Association of telemedicine for remote monitoring of intensive care patients with mortality, complications, and length of stay.
    Thomas EJ; Lucke JF; Wueste L; Weavind L; Patel B
    JAMA; 2009 Dec; 302(24):2671-8. PubMed ID: 20040555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and testing of a systemic lupus-specific risk adjustment index for in-hospital mortality.
    Ward MM
    J Rheumatol; 2000 Jun; 27(6):1408-13. PubMed ID: 10852262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cortisol levels and corticosteroid administration fail to predict mortality in critical illness: the confounding effects of organ dysfunction and sex.
    Rady MY; Johnson DJ; Patel B; Larson J; Helmers R
    Arch Surg; 2005 Jul; 140(7):661-8; discussion 669. PubMed ID: 16027331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An electronic Simplified Acute Physiology Score-based risk adjustment score for critical illness in an integrated healthcare system.
    Liu V; Turk BJ; Ragins AI; Kipnis P; Escobar GJ
    Crit Care Med; 2013 Jan; 41(1):41-8. PubMed ID: 23222263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The difference between critical care initiation anion gap and prehospital admission anion gap is predictive of mortality in critical illness.
    Lipnick MS; Braun AB; Cheung JT; Gibbons FK; Christopher KB
    Crit Care Med; 2013 Jan; 41(1):49-59. PubMed ID: 23190721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.