These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 25925200)
1. Microbial granulation for lactic acid production. Kim DH; Lee MK; Hwang Y; Im WT; Yun YM; Park C; Kim MS Biotechnol Bioeng; 2016 Jan; 113(1):101-11. PubMed ID: 25925200 [TBL] [Abstract][Full Text] [Related]
2. Effect of hydraulic retention time on lactic acid production and granulation in an up-flow anaerobic sludge blanket reactor. Kim DH; Lee MK; Moon C; Yun YM; Lee W; Oh SE; Kim MS Bioresour Technol; 2014 Aug; 165():158-61. PubMed ID: 24767539 [TBL] [Abstract][Full Text] [Related]
3. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
4. Effect of temperature on continuous fermentative lactic acid (LA) production and bacterial community, and development of LA-producing UASB reactor. Kim DH; Lim WT; Lee MK; Kim MS Bioresour Technol; 2012 Sep; 119():355-61. PubMed ID: 22750503 [TBL] [Abstract][Full Text] [Related]
5. Rapid formation of hydrogen-producing granules in an anaerobic continuous stirred tank reactor induced by acid incubation. Zhang ZP; Show KY; Tay JH; Liang DT; Lee DJ; Jiang WJ Biotechnol Bioeng; 2007 Apr; 96(6):1040-50. PubMed ID: 17089398 [TBL] [Abstract][Full Text] [Related]
6. Effect of low pH start-up on continuous mixed-culture lactic acid fermentation of dairy effluent. Choi G; Kim J; Lee C Appl Microbiol Biotechnol; 2016 Dec; 100(23):10179-10191. PubMed ID: 27709285 [TBL] [Abstract][Full Text] [Related]
7. Effects of hydraulic retention time on aerobic granulation and granule growth kinetics at steady state with a fast start-up strategy. Liu YQ; Zhang X; Zhang R; Liu WT; Tay JH Appl Microbiol Biotechnol; 2016 Jan; 100(1):469-77. PubMed ID: 26403920 [TBL] [Abstract][Full Text] [Related]
8. Fermentative hydrogen production and bacterial community structure in high-rate anaerobic bioreactors containing silicone-immobilized and self-flocculated sludge. Wu SY; Hung CH; Lin CN; Chen HW; Lee AS; Chang JS Biotechnol Bioeng; 2006 Apr; 93(5):934-46. PubMed ID: 16329152 [TBL] [Abstract][Full Text] [Related]
9. Degradation of phenol in an upflow anaerobic sludge blanket (UASB) reactor at ambient temperature. Ke SZ; Shi Z; Zhang T; Fang HH J Environ Sci (China); 2004; 16(3):525-8. PubMed ID: 15272736 [TBL] [Abstract][Full Text] [Related]
10. Treatment of domestic wastewater in an up-flow anaerobic sludge blanket reactor followed by moving bed biofilm reactor. Tawfik A; El-Gohary F; Temmink H Bioprocess Biosyst Eng; 2010 Feb; 33(2):267-76. PubMed ID: 19404682 [TBL] [Abstract][Full Text] [Related]
11. Removal of residual dissolved methane gas in an upflow anaerobic sludge blanket reactor treating low-strength wastewater at low temperature with degassing membrane. Bandara WM; Satoh H; Sasakawa M; Nakahara Y; Takahashi M; Okabe S Water Res; 2011 May; 45(11):3533-40. PubMed ID: 21550096 [TBL] [Abstract][Full Text] [Related]
12. Effects of shock 2,4-dichlorophenol (DCP) and cod loading rates on the removal of 2,4-DCP in a sequential upflow anaerobic sludge blanket/aerobic completely stirred tank reactor system. Uluköy A; Sponza DT Environ Technol; 2008 Apr; 29(4):413-21. PubMed ID: 18619146 [TBL] [Abstract][Full Text] [Related]
13. Effect of process configuration and substrate complexity on the performance of anaerobic processes. Azbar N; Ursillo P; Speece RE Water Res; 2001 Mar; 35(3):817-29. PubMed ID: 11228981 [TBL] [Abstract][Full Text] [Related]
14. Anaerobic hydrogen production with an efficient carrier-induced granular sludge bed bioreactor. Lee KS; Wu JF; Lo YS; Lo YC; Lin PJ; Chang JS Biotechnol Bioeng; 2004 Sep; 87(5):648-57. PubMed ID: 15352063 [TBL] [Abstract][Full Text] [Related]
15. Extreme thermophilic biohydrogen production from wheat straw hydrolysate using mixed culture fermentation: effect of reactor configuration. Kongjan P; Angelidaki I Bioresour Technol; 2010 Oct; 101(20):7789-96. PubMed ID: 20554199 [TBL] [Abstract][Full Text] [Related]
16. Performance comparison of a continuous-flow stirred-tank reactor and an anaerobic sequencing batch reactor for fermentative hydrogen production depending on substrate concentration. Kim SH; Han SK; Shin HS Water Sci Technol; 2005; 52(10-11):23-9. PubMed ID: 16459773 [TBL] [Abstract][Full Text] [Related]
17. Acclimation of the trichloroethylene-degrading anaerobic granular sludge and the degradation characteristics in an upflow anaerobic sludge blanket reactor. Zhang Y; Liu Y; Hu M; Jiang Z Water Sci Technol; 2014; 69(1):120-7. PubMed ID: 24434977 [TBL] [Abstract][Full Text] [Related]
18. Microbiome involved in anaerobic hydrogen producing granules: A mini review. Pugazhendhi A; Kumar G; Sivagurunathan P Biotechnol Rep (Amst); 2019 Mar; 21():e00301. PubMed ID: 30627520 [TBL] [Abstract][Full Text] [Related]
19. Effect of substrate concentration on dark fermentation hydrogen production using an anaerobic fluidized bed reactor. de Amorim EL; Sader LT; Silva EL Appl Biochem Biotechnol; 2012 Mar; 166(5):1248-63. PubMed ID: 22212393 [TBL] [Abstract][Full Text] [Related]
20. Degradation of 4-chlorophenol in UASB reactor under methanogenic conditions. Majumder PS; Gupta SK Bioresour Technol; 2008 Jul; 99(10):4169-77. PubMed ID: 17928222 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]