These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 25925247)

  • 1. Lithium Storage in Heat-Treated SnF2 /Polyacrylonitrile Anode.
    Shen L; Shen L; Wang Z; Chen L
    Chemistry; 2015 Jun; 21(23):8491-6. PubMed ID: 25925247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple ambient hydrolysis deposition of tin oxide into nanoporous carbon to give a stable anode for lithium-ion batteries.
    Raju V; Wang X; Luo W; Ji X
    Chemistry; 2014 Jun; 20(25):7686-91. PubMed ID: 24804844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ thermally cross-linked polyacrylonitrile as binder for high-performance silicon as lithium ion battery anode.
    Shen L; Shen L; Wang Z; Chen L
    ChemSusChem; 2014 Jul; 7(7):1951-6. PubMed ID: 24782265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible conversion-alloying of Sb2O3 as a high-capacity, high-rate, and durable anode for sodium ion batteries.
    Hu M; Jiang Y; Sun W; Wang H; Jin C; Yan M
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19449-55. PubMed ID: 25329758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An in Situ-Formed Mosaic Li
    Hu B; Yu W; Xu B; Zhang X; Liu T; Shen Y; Lin YH; Nan CW; Li L
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):34939-34947. PubMed ID: 31465194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tin and Tin Compounds for Sodium Ion Battery Anodes: Phase Transformations and Performance.
    Li Z; Ding J; Mitlin D
    Acc Chem Res; 2015 Jun; 48(6):1657-65. PubMed ID: 26046961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes.
    Wang W; Kumta PN
    ACS Nano; 2010 Apr; 4(4):2233-41. PubMed ID: 20364846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hierarchical tin/carbon composite as an anode for lithium-ion batteries with a long cycle life.
    Huang X; Cui S; Chang J; Hallac PB; Fell CR; Luo Y; Metz B; Jiang J; Hurley PT; Chen J
    Angew Chem Int Ed Engl; 2015 Jan; 54(5):1490-3. PubMed ID: 25504807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transition-metal-catalyzed oxidation of metallic Sn in NiO/SnO2 nanocomposite.
    Hua C; Fang X; Wang Z; Chen L
    Chemistry; 2014 Apr; 20(18):5487-91. PubMed ID: 24648283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sn@CNT nanostructures rooted in graphene with high and fast Li-storage capacities.
    Zou Y; Wang Y
    ACS Nano; 2011 Oct; 5(10):8108-14. PubMed ID: 21939228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tin nanoparticles encapsulated in porous multichannel carbon microtubes: preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries.
    Yu Y; Gu L; Zhu C; van Aken PA; Maier J
    J Am Chem Soc; 2009 Nov; 131(44):15984-5. PubMed ID: 19886691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small quantities of cobalt deposited on tin oxide as anode material to improve performance of lithium-ion batteries.
    Mei L; Li C; Qu B; Zhang M; Xu C; Lei D; Chen Y; Xu Z; Chen L; Li Q; Wang T
    Nanoscale; 2012 Sep; 4(18):5731-7. PubMed ID: 22892999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical sulfur-based cathode materials with long cycle life for rechargeable lithium batteries.
    Wang J; Yin L; Jia H; Yu H; He Y; Yang J; Monroe CW
    ChemSusChem; 2014 Feb; 7(2):563-9. PubMed ID: 24155121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium/Lithium storage behavior of antimony hollow nanospheres for rechargeable batteries.
    Hou H; Jing M; Yang Y; Zhu Y; Fang L; Song W; Pan C; Yang X; Ji X
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16189-96. PubMed ID: 25140456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A rationally designed dual role anode material for lithium-ion and sodium-ion batteries: case study of eco-friendly Fe3O4.
    Hariharan S; Saravanan K; Ramar V; Balaya P
    Phys Chem Chem Phys; 2013 Feb; 15(8):2945-53. PubMed ID: 23340646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensionally interconnected TaS3 nanowire network as anode for high-performance flexible Li-ion battery.
    Li W; Yang L; Wang J; Xiang B; Yu Y
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5629-33. PubMed ID: 25734226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemically Induced Amorphization and Unique Lithium and Sodium Storage Pathways in FeSbO
    Edison E; Gogoi PK; Zheng Y; Sreejith S; Pennycook SJ; Lim CT; Srinivasan M
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20082-20090. PubMed ID: 31083921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase evolution of tin nanocrystals in lithium ion batteries.
    Im HS; Cho YJ; Lim YR; Jung CS; Jang DM; Park J; Shojaei F; Kang HS
    ACS Nano; 2013 Dec; 7(12):11103-11. PubMed ID: 24195495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene networks anchored with sn@graphene as lithium ion battery anode.
    Qin J; He C; Zhao N; Wang Z; Shi C; Liu EZ; Li J
    ACS Nano; 2014 Feb; 8(2):1728-38. PubMed ID: 24400945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pushing Up Lithium Storage through Nanostructured Polyazaacene Analogues as Anode.
    Wu J; Rui X; Long G; Chen W; Yan Q; Zhang Q
    Angew Chem Int Ed Engl; 2015 Jun; 54(25):7354-8. PubMed ID: 25960289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.