These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 25925247)

  • 21. Three-dimensional Sn-graphene anode for high-performance lithium-ion batteries.
    Wang C; Li Y; Chui YS; Wu QH; Chen X; Zhang W
    Nanoscale; 2013 Nov; 5(21):10599-604. PubMed ID: 24057017
    [TBL] [Abstract][Full Text] [Related]  

  • 22. One-step electrochemical growth of a three-dimensional Sn-Ni@PEO nanotube array as a high performance lithium-ion battery anode.
    Fan X; Dou P; Jiang A; Ma D; Xu X
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22282-8. PubMed ID: 25423255
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hexagonal-shaped tin glycolate particles: a preliminary study of their suitability as li-ion insertion electrodes.
    Ng SH; Chew SY; Dos Santos DI; Chen J; Wang JZ; Dou SX; Liu HK
    Chem Asian J; 2008 May; 3(5):854-61. PubMed ID: 18383054
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The use of tin-decorated mesoporous carbon as an anode material for rechargeable lithium batteries.
    Grigoriants I; Sominski L; Li H; Ifargan I; Aurbach D; Gedanken A
    Chem Commun (Camb); 2005 Feb; (7):921-3. PubMed ID: 15700082
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-performance lithium-ion battery anode by direct growth of hierarchical ZnCo2O4 nanostructures on current collectors.
    Qu B; Hu L; Li Q; Wang Y; Chen L; Wang T
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):731-6. PubMed ID: 24344726
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A self-standing and flexible electrode of yolk-shell CoS2 spheres encapsulated with nitrogen-doped graphene for high-performance lithium-ion batteries.
    Qiu W; Jiao J; Xia J; Zhong H; Chen L
    Chemistry; 2015 Mar; 21(11):4359-67. PubMed ID: 25643650
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancement of lithium storage performance of carbon microflowers by achieving a high surface area.
    Li Y; Xiao Y; Wang X; Cao M
    Chem Asian J; 2014 Jul; 9(7):1957-63. PubMed ID: 24850804
    [TBL] [Abstract][Full Text] [Related]  

  • 28. LiFe(MoO4)2 as a novel anode material for lithium-ion batteries.
    Chen N; Yao Y; Wang D; Wei Y; Bie X; Wang C; Chen G; Du F
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10661-6. PubMed ID: 24905851
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Graphene/carbon-coated Si nanoparticle hybrids as high-performance anode materials for Li-ion batteries.
    Zhou M; Cai T; Pu F; Chen H; Wang Z; Zhang H; Guan S
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3449-55. PubMed ID: 23527898
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design of poly(acrylonitrile)-based gel electrolytes for high-performance lithium ion batteries.
    Wang SH; Kuo PL; Hsieh CT; Teng H
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19360-70. PubMed ID: 25361495
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MgO-decorated few-layered graphene as an anode for li-ion batteries.
    Petnikota S; Rotte NK; Reddy MV; Srikanth VV; Chowdari BV
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2301-9. PubMed ID: 25559260
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanoparticulate Mn3O4/VGCF composite conversion-anode material with extraordinarily high capacity and excellent rate capability for lithium ion batteries.
    Ma F; Yuan A; Xu J
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):18129-38. PubMed ID: 25247688
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries.
    Meduri P; Pendyala C; Kumar V; Sumanasekera GU; Sunkara MK
    Nano Lett; 2009 Feb; 9(2):612-6. PubMed ID: 19159325
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ternary Sn-Ti-O based nanostructures as anodes for lithium ion batteries.
    Wang H; Huang H; Niu C; Rogach AL
    Small; 2015 Mar; 11(12):1364-83. PubMed ID: 25504364
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cobalt oxide-carbon nanosheet nanoarchitecture as an anode for high-performance lithium-ion battery.
    Wang H; Mao N; Shi J; Wang Q; Yu W; Wang X
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2882-90. PubMed ID: 25571930
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two-dimensional carbon-coated graphene/metal oxide hybrids for enhanced lithium storage.
    Su Y; Li S; Wu D; Zhang F; Liang H; Gao P; Cheng C; Feng X
    ACS Nano; 2012 Sep; 6(9):8349-56. PubMed ID: 22931096
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Titania-carbon nanocomposite anodes for lithium ion batteries--effects of confined growth and phase synergism.
    Petkovich ND; Wilson BE; Rudisill SG; Stein A
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):18215-27. PubMed ID: 25249184
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries.
    Liu J; Xia H; Xue D; Lu L
    J Am Chem Soc; 2009 Sep; 131(34):12086-7. PubMed ID: 19705911
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An experimental and computational study to understand the lithium storage mechanism in molybdenum disulfide.
    Sen UK; Johari P; Basu S; Nayak C; Mitra S
    Nanoscale; 2014 Sep; 6(17):10243-54. PubMed ID: 25057812
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pitaya-like Sn@C nanocomposites as high-rate and long-life anode for lithium-ion batteries.
    Zhang N; Zhao Q; Han X; Yang J; Chen J
    Nanoscale; 2014 Mar; 6(5):2827-32. PubMed ID: 24468961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.