These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 25925247)

  • 41. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Co3O4/carbon aerogel hybrids as anode materials for lithium-ion batteries with enhanced electrochemical properties.
    Hao F; Zhang Z; Yin L
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8337-44. PubMed ID: 23924311
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Lignin-derived fused electrospun carbon fibrous mats as high performance anode materials for lithium ion batteries.
    Wang SX; Yang L; Stubbs LP; Li X; He C
    ACS Appl Mater Interfaces; 2013 Dec; 5(23):12275-82. PubMed ID: 24256294
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Full structural and electrochemical characterization of Li2Ti6O13 as anode for Li-ion batteries.
    Pérez-Flores JC; Baehtz C; Hoelzel M; Kuhn A; García-Alvarado F
    Phys Chem Chem Phys; 2012 Feb; 14(8):2892-9. PubMed ID: 22258437
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity.
    Peng C; Chen B; Qin Y; Yang S; Li C; Zuo Y; Liu S; Yang J
    ACS Nano; 2012 Feb; 6(2):1074-81. PubMed ID: 22224549
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Development of a high-performance anode for lithium ion batteries using novel ordered mesoporous tungsten oxide materials with high electrical conductivity.
    Yoon S; Jo C; Noh SY; Lee CW; Song JH; Lee J
    Phys Chem Chem Phys; 2011 Jun; 13(23):11060-6. PubMed ID: 21552641
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Germanium-tin alloy nanocrystals for high-performance lithium ion batteries.
    Cho YJ; Kim CH; Im HS; Myung Y; Kim HS; Back SH; Lim YR; Jung CS; Jang DM; Park J; Lim SH; Cha EH; Bae KY; Song MS; Cho WI
    Phys Chem Chem Phys; 2013 Jul; 15(28):11691-5. PubMed ID: 23753000
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synthesis of tin nanocrystals in room temperature ionic liquids.
    Le Vot S; Dambournet D; Groult H; Ngo AT; Petit C; Rizzi C; Salzemann C; Sirieix-Plenet J; Borkiewicz OJ; Raymundo-Piñero E; Gaillon L
    Dalton Trans; 2014 Dec; 43(48):18025-34. PubMed ID: 25352309
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sodium-ion battery based on an electrochemically converted NaFePO4 cathode and nanostructured tin-carbon anode.
    Hasa I; Hassoun J; Sun YK; Scrosati B
    Chemphyschem; 2014 Jul; 15(10):2152-5. PubMed ID: 24737749
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interconnected hollow carbon nanospheres for stable lithium metal anodes.
    Zheng G; Lee SW; Liang Z; Lee HW; Yan K; Yao H; Wang H; Li W; Chu S; Cui Y
    Nat Nanotechnol; 2014 Aug; 9(8):618-23. PubMed ID: 25064396
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Long-term cycling studies on electrospun carbon nanofibers as anode material for lithium ion batteries.
    Wu Y; Reddy MV; Chowdari BV; Ramakrishna S
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):12175-84. PubMed ID: 24171411
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries.
    Wu ZS; Ren W; Xu L; Li F; Cheng HM
    ACS Nano; 2011 Jul; 5(7):5463-71. PubMed ID: 21696205
    [TBL] [Abstract][Full Text] [Related]  

  • 54. CuO nanostructures supported on Cu substrate as integrated electrodes for highly reversible lithium storage.
    Wang Z; Su F; Madhavi S; Lou XW
    Nanoscale; 2011 Apr; 3(4):1618-23. PubMed ID: 21286653
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Template-free synthesis of hollow-structured Co3O4 nanoparticles as high-performance anodes for lithium-ion batteries.
    Wang D; Yu Y; He H; Wang J; Zhou W; Abruña HD
    ACS Nano; 2015 Feb; 9(2):1775-81. PubMed ID: 25602513
    [TBL] [Abstract][Full Text] [Related]  

  • 56. MoO2-ordered mesoporous carbon nanocomposite as an anode material for lithium-ion batteries.
    Zeng L; Zheng C; Deng C; Ding X; Wei M
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2182-7. PubMed ID: 23438299
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Surface modification of sulfur electrodes by chemically anchored cross-linked polymer coating for lithium-sulfur batteries.
    Lim S; Thankamony RL; Yim T; Chu H; Kim YJ; Mun J; Kim TH
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1401-5. PubMed ID: 25569854
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Metal hydrides for lithium-ion batteries.
    Oumellal Y; Rougier A; Nazri GA; Tarascon JM; Aymard L
    Nat Mater; 2008 Nov; 7(11):916-21. PubMed ID: 18849978
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rapid synthesis of nitrogen-doped graphene for a lithium ion battery anode with excellent rate performance and super-long cyclic stability.
    Hu T; Sun X; Sun H; Xin G; Shao D; Liu C; Lian J
    Phys Chem Chem Phys; 2014 Jan; 16(3):1060-6. PubMed ID: 24287587
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Manipulating surface reactions in lithium-sulphur batteries using hybrid anode structures.
    Huang C; Xiao J; Shao Y; Zheng J; Bennett WD; Lu D; Saraf LV; Engelhard M; Ji L; Zhang J; Li X; Graff GL; Liu J
    Nat Commun; 2014; 5():3015. PubMed ID: 24402522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.