These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 25925317)

  • 1. Why do movements drift in the dark? Passive versus active mechanisms of error accumulation.
    Cameron BD; de la Malla C; López-Moliner J
    J Neurophysiol; 2015 Jul; 114(1):390-9. PubMed ID: 25925317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limb position drift results from misalignment of proprioceptive and visual maps.
    Patterson JR; Brown LE; Wagstaff DA; Sainburg RL
    Neuroscience; 2017 Mar; 346():382-394. PubMed ID: 28163058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motor and sensory disturbances induced by sensorimotor conflicts during passive and active movements in healthy participants.
    Brun C; Gagné M; McCabe CS; Mercier C
    PLoS One; 2018; 13(8):e0203206. PubMed ID: 30157264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force field adaptation can be learned using vision in the absence of proprioceptive error.
    Melendez-Calderon A; Masia L; Gassert R; Sandini G; Burdet E
    IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):298-306. PubMed ID: 21652280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensory integration does not lead to sensory calibration.
    Smeets JB; van den Dobbelsteen JJ; de Grave DD; van Beers RJ; Brenner E
    Proc Natl Acad Sci U S A; 2006 Dec; 103(49):18781-6. PubMed ID: 17130453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vision of the hand prior to movement onset allows full motor adaptation to a multi-force environment.
    Bourdin C; Bringoux L; Gauthier GM; Vercher JL
    Brain Res Bull; 2006 Dec; 71(1-3):101-10. PubMed ID: 17113935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Target modality affects visually guided online control of reaching.
    Cameron BD; López-Moliner J
    Vision Res; 2015 May; 110(Pt B):233-43. PubMed ID: 24997229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of visuomotor-map uncertainty on visuomotor adaptation.
    Saijo N; Gomi H
    J Neurophysiol; 2012 Mar; 107(6):1576-85. PubMed ID: 22190631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A key region in the human parietal cortex for processing proprioceptive hand feedback during reaching movements.
    Reichenbach A; Thielscher A; Peer A; Bülthoff HH; Bresciani JP
    Neuroimage; 2014 Jan; 84():615-25. PubMed ID: 24060316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How timely can our hand movements be?
    de la Malla C; López-Moliner J
    Hum Mov Sci; 2012 Oct; 31(5):1103-17. PubMed ID: 22534212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypnotizability and the position sense: proprioceptive localization of the hand.
    Padilla-Castaneda MA; Castellani E; Frisoli A; Bergamasco M; Santarcangelo EL
    Arch Ital Biol; 2015 Mar; 153(1):46-55. PubMed ID: 26441365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensory reweighting in targeted reaching: effects of conscious effort, error history, and target salience.
    Block HJ; Bastian AJ
    J Neurophysiol; 2010 Jan; 103(1):206-17. PubMed ID: 19846617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opposed optimal strategies of weighting somatosensory inputs for planning reaching movements toward visual and proprioceptive targets.
    Blouin J; Saradjian AH; Lebar N; Guillaume A; Mouchnino L
    J Neurophysiol; 2014 Nov; 112(9):2290-301. PubMed ID: 25122716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of internal forward models and proprioception in hand position estimation.
    Yavari F; Towhidkhah F; Ahmadi-Pajouh MA; Darainy M
    J Integr Neurosci; 2015 Sep; 14(3):403-18. PubMed ID: 26307154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changing the size of a mirror-reflected hand moderates the experience of embodiment but not proprioceptive drift: a repeated measures study on healthy human participants.
    Wittkopf PG; Lloyd DM; Johnson MI
    Exp Brain Res; 2017 Jun; 235(6):1933-1944. PubMed ID: 28315946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of visual feedback of the hand according to target view availability in the online control of prehension movements.
    Fukui T; Inui T
    Hum Mov Sci; 2013 Aug; 32(4):580-95. PubMed ID: 24054896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proprioception does not quickly drift during visual occlusion.
    Desmurget M; Vindras P; Gréa H; Viviani P; Grafton ST
    Exp Brain Res; 2000 Oct; 134(3):363-77. PubMed ID: 11045361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of visual and proprioceptive information to the precision of reaching movements.
    Monaco S; Króliczak G; Quinlan DJ; Fattori P; Galletti C; Goodale MA; Culham JC
    Exp Brain Res; 2010 Apr; 202(1):15-32. PubMed ID: 19967391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motor learning without moving: Proprioceptive and predictive hand localization after passive visuoproprioceptive discrepancy training.
    Mostafa AA; 't Hart BM; Henriques DYP
    PLoS One; 2019; 14(8):e0221861. PubMed ID: 31465524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mixed body- and gaze-centered coding of proprioceptive reach targets after effector movement.
    Mueller S; Fiehler K
    Neuropsychologia; 2016 Jul; 87():63-73. PubMed ID: 27157885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.