BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 25925325)

  • 1. Blockade of in vitro ictogenesis by low-frequency stimulation coincides with increased epileptiform response latency.
    Kano T; Inaba Y; D'Antuono M; Biagini G; Levésque M; Avoli M
    J Neurophysiol; 2015 Jul; 114(1):21-8. PubMed ID: 25925325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Presynaptic GABA
    Smirnova EY; Chizhov AV; Zaitsev AV
    Brain Stimul; 2020; 13(5):1387-1395. PubMed ID: 32717394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. KCC2 function modulates in vitro ictogenesis.
    Hamidi S; Avoli M
    Neurobiol Dis; 2015 Jul; 79():51-8. PubMed ID: 25926348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypersynchronous ictal onset in the perirhinal cortex results from dynamic weakening in inhibition.
    Köhling R; D'Antuono M; Benini R; de Guzman P; Avoli M
    Neurobiol Dis; 2016 Mar; 87():1-10. PubMed ID: 26699817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optogenetic Low-Frequency Stimulation of Specific Neuronal Populations Abates Ictogenesis.
    Shiri Z; Lévesque M; Etter G; Manseau F; Williams S; Avoli M
    J Neurosci; 2017 Mar; 37(11):2999-3008. PubMed ID: 28209738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-duration self-sustained epileptiform activity in the hippocampal-parahippocampal slice: a model of status epilepticus.
    Rafiq A; Zhang YF; DeLorenzo RJ; Coulter DA
    J Neurophysiol; 1995 Nov; 74(5):2028-42. PubMed ID: 8592194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repetitive low-frequency stimulation reduces epileptiform synchronization in limbic neuronal networks.
    D'Arcangelo G; Panuccio G; Tancredi V; Avoli M
    Neurobiol Dis; 2005; 19(1-2):119-28. PubMed ID: 15837567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Initiation of electrographic seizures by neuronal networks in entorhinal and perirhinal cortices in vitro.
    de Guzman P; D'Antuono M; Avoli M
    Neuroscience; 2004; 123(4):875-86. PubMed ID: 14751281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity-dependent changes in excitability of perirhinal cortex networks in vitro.
    Biagini G; D'Antuono M; Inaba Y; Kano T; Ragsdale D; Avoli M
    Pflugers Arch; 2015 Apr; 467(4):805-16. PubMed ID: 24903241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of amygdala networks in epileptiform synchronization in vitro.
    Benini R; D'Antuono M; Pralong E; Avoli M
    Neuroscience; 2003; 120(1):75-84. PubMed ID: 12849742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbonic anhydrase inhibition by acetazolamide reduces in vitro epileptiform synchronization.
    Hamidi S; Avoli M
    Neuropharmacology; 2015 Aug; 95():377-87. PubMed ID: 25937211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptic and non-synaptic mechanisms of amygdala recruitment into temporolimbic epileptiform activities.
    Klueva J; Munsch T; Albrecht D; Pape HC
    Eur J Neurosci; 2003 Nov; 18(10):2779-91. PubMed ID: 14656327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-lasting hyperpolarization underlies seizure reduction by low frequency deep brain electrical stimulation.
    Toprani S; Durand DM
    J Physiol; 2013 Nov; 591(22):5765-90. PubMed ID: 23981713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro ictogenesis and parahippocampal networks in a rodent model of temporal lobe epilepsy.
    Panuccio G; D'Antuono M; de Guzman P; De Lannoy L; Biagini G; Avoli M
    Neurobiol Dis; 2010 Sep; 39(3):372-80. PubMed ID: 20452424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of spontaneous and evoked epileptiform activity in three in vitro epilepsy models.
    Gulyás-Kovács A; Dóczi J; Tarnawa I; Détári L; Banczerowski-Pelyhe I; Világi I
    Brain Res; 2002 Aug; 945(2):174-80. PubMed ID: 12126879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-frequency electrical stimulation suppresses cholinergic accumbens interneurons in acute rat brain slices through GABA(B) receptors.
    Xie Y; Heida T; Stegenga J; Zhao Y; Moser A; Tronnier V; Feuerstein TJ; Hofmann UG
    Eur J Neurosci; 2014 Dec; 40(11):3653-62. PubMed ID: 25251290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epileptiform synchronization in the cingulate cortex.
    Panuccio G; Curia G; Colosimo A; Cruccu G; Avoli M
    Epilepsia; 2009 Mar; 50(3):521-36. PubMed ID: 19178556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurosteroids modulate epileptiform activity and associated high-frequency oscillations in the piriform cortex.
    Herrington R; Lévesque M; Avoli M
    Neuroscience; 2014 Jan; 256():467-77. PubMed ID: 24157930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of in vitro epileptiform activity by optogenetic stimulation of parvalbumin-positive interneurons.
    Wang S; Kfoury C; Marion A; Lévesque M; Avoli M
    J Neurophysiol; 2022 Oct; 128(4):837-846. PubMed ID: 36043700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epileptiform activity induced by 4-aminopyridine in guinea-pig and rat neocortices.
    Mattia D; Hwa GG; Avoli M
    Neurosci Lett; 1993 May; 154(1-2):157-60. PubMed ID: 8103197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.