BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 25925383)

  • 1. Quantum dot assisted tracking of the intracellular protein Cyclin E in Xenopus laevis embryos.
    Brandt YI; Mitchell T; Smolyakov GA; Osiński M; Hartley RS
    J Nanobiotechnology; 2015 Apr; 13():31. PubMed ID: 25925383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing intracellular stability and targeting of sulfobetaine quantum dots with other surface chemistries in live cells.
    Muro E; Fragola A; Pons T; Lequeux N; Ioannou A; Skourides P; Dubertret B
    Small; 2012 Apr; 8(7):1029-37. PubMed ID: 22378567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-engineered quantum dots for the labeling of hydrophobic microdomains in bacterial biofilms.
    Aldeek F; Mustin C; Balan L; Roques-Carmes T; Fontaine-Aupart MP; Schneider R
    Biomaterials; 2011 Aug; 32(23):5459-70. PubMed ID: 21549423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antisense knockdown of cyclin E does not affect the midblastula transition in Xenopus laevis embryos.
    Slevin MK; Lyons-Levy G; Weeks DL; Hartley RS
    Cell Cycle; 2005 Oct; 4(10):1396-402. PubMed ID: 16131839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small-molecule ligands strongly affect the Förster resonance energy transfer between a quantum dot and a fluorescent protein.
    Zhang Y; Zhang H; Hollins J; Webb ME; Zhou D
    Phys Chem Chem Phys; 2011 Nov; 13(43):19427-36. PubMed ID: 21971088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors.
    Clapp AR; Medintz IL; Mauro JM; Fisher BR; Bawendi MG; Mattoussi H
    J Am Chem Soc; 2004 Jan; 126(1):301-10. PubMed ID: 14709096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytotoxicity of quantum dots used for in vitro cellular labeling: role of QD surface ligand, delivery modality, cell type, and direct comparison to organic fluorophores.
    Bradburne CE; Delehanty JB; Boeneman Gemmill K; Mei BC; Mattoussi H; Susumu K; Blanco-Canosa JB; Dawson PE; Medintz IL
    Bioconjug Chem; 2013 Sep; 24(9):1570-83. PubMed ID: 23879393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oriented Bioconjugation of Unmodified Antibodies to Quantum Dots Capped with Copolymeric Ligands as Versatile Cellular Imaging Tools.
    Tasso M; Singh MK; Giovanelli E; Fragola A; Loriette V; Regairaz M; Dautry F; Treussart F; Lenkei Z; Lequeux N; Pons T
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26904-13. PubMed ID: 26551755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chk1 is activated at the midblastula transition in Xenopus laevis embryos independently of DNA content and the cyclin E/Cdk2 developmental timer.
    Adjerid N; Wroble BN; Sible JC
    Cell Cycle; 2008 Apr; 7(8):1112-6. PubMed ID: 18414041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluoroimmunoassays using antibody-conjugated quantum dots.
    Goldman ER; Mattoussi H; Anderson GP; Medintz IL; Mauro JM
    Methods Mol Biol; 2005; 303():19-34. PubMed ID: 15923672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitization enhancement of europium in ZnSe/ZnS core/shell quantum dots induced by efficient energy transfer.
    Liu N; Xu L; Wang H; Xu J; Su W; Ma Z; Chen K
    Luminescence; 2014 Dec; 29(8):1095-101. PubMed ID: 24898670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust and specific ratiometric biosensing using a copper-free clicked quantum dot-DNA aptamer sensor.
    Zhang H; Feng G; Guo Y; Zhou D
    Nanoscale; 2013 Nov; 5(21):10307-15. PubMed ID: 24056667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capping of CdSe-ZnS quantum dots with DHLA and subsequent conjugation with proteins.
    Clapp AR; Goldman ER; Mattoussi H
    Nat Protoc; 2006; 1(3):1258-66. PubMed ID: 17406409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metallomics Study of CdSe/ZnS Quantum Dots in HepG2 Cells.
    Peng L; He M; Chen B; Qiao Y; Hu B
    ACS Nano; 2015 Oct; 9(10):10324-34. PubMed ID: 26389814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular bioconjugation of targeted proteins with semiconductor quantum dots.
    Boeneman K; Delehanty JB; Susumu K; Stewart MH; Medintz IL
    J Am Chem Soc; 2010 May; 132(17):5975-7. PubMed ID: 20392040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores.
    Uyeda HT; Medintz IL; Jaiswal JK; Simon SM; Mattoussi H
    J Am Chem Soc; 2005 Mar; 127(11):3870-8. PubMed ID: 15771523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of DHLA-capped CdSe/ZnS quantum dots on the fibrillation of human serum albumin.
    Vannoy CH; Leblanc RM
    J Phys Chem B; 2010 Aug; 114(33):10881-8. PubMed ID: 20681557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitive prostate specific antigen quantification using dihydrolipoic acid surface-functionalized phosphorescent quantum dots.
    García-Cortés M; Fernández-Argüelles MT; Costa-Fernández JM; Sanz-Medel A
    Anal Chim Acta; 2017 Sep; 987():118-126. PubMed ID: 28916035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small and stable sulfobetaine zwitterionic quantum dots for functional live-cell imaging.
    Muro E; Pons T; Lequeux N; Fragola A; Sanson N; Lenkei Z; Dubertret B
    J Am Chem Soc; 2010 Apr; 132(13):4556-7. PubMed ID: 20235547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Luminescent biocompatible quantum dots: a tool for immunosorbent assay design.
    Goldman ER; Uyeda HT; Hayhurst A; Mattoussi H
    Methods Mol Biol; 2007; 374():207-27. PubMed ID: 17237541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.