These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 25925889)
1. Hydrogen improves neurological function through attenuation of blood-brain barrier disruption in spontaneously hypertensive stroke-prone rats. Takeuchi S; Nagatani K; Otani N; Nawashiro H; Sugawara T; Wada K; Mori K BMC Neurosci; 2015 Apr; 16():22. PubMed ID: 25925889 [TBL] [Abstract][Full Text] [Related]
2. The expression of matrix metalloproteinase-13 is increased in vessels with blood-brain barrier impairment in a stroke-prone hypertensive model. Ueno M; Wu B; Nishiyama A; Huang CL; Hosomi N; Kusaka T; Nakagawa T; Onodera M; Kido M; Sakamoto H Hypertens Res; 2009 May; 32(5):332-8. PubMed ID: 19300451 [TBL] [Abstract][Full Text] [Related]
3. Hydrogen-rich water attenuates brain damage and inflammation after traumatic brain injury in rats. Tian R; Hou Z; Hao S; Wu W; Mao X; Tao X; Lu T; Liu B Brain Res; 2016 Apr; 1637():1-13. PubMed ID: 26826009 [TBL] [Abstract][Full Text] [Related]
4. Involvement of thromboxane A2 receptor in the cerebrovascular damage of salt-loaded, stroke-prone rats. Ishizuka T; Niwa A; Tabuchi M; Nagatani Y; Ooshima K; Higashino H J Hypertens; 2007 Apr; 25(4):861-70. PubMed ID: 17351380 [TBL] [Abstract][Full Text] [Related]
5. Possible involvement of oxidative stress as a causative factor in blood-brain barrier dysfunction in stroke-prone spontaneously hypertensive rats. Takemori K; Murakami T; Kometani T; Ito H Microvasc Res; 2013 Nov; 90():169-72. PubMed ID: 23978333 [TBL] [Abstract][Full Text] [Related]
7. The role of cytochrome p-450 in salt-sensitive stroke in stroke-prone spontaneously hypertensive rats. Ying CJ; Noguchi T; Aso H; Ikeda K; Yamori Y; Nara Y Hypertens Res; 2008 Sep; 31(9):1821-7. PubMed ID: 18971561 [TBL] [Abstract][Full Text] [Related]
8. Critical role of angiotensin II in excess salt-induced brain oxidative stress of stroke-prone spontaneously hypertensive rats. Kim-Mitsuyama S; Yamamoto E; Tanaka T; Zhan Y; Izumi Y; Izumiya Y; Ioroi T; Wanibuchi H; Iwao H Stroke; 2005 May; 36(5):1083-8. PubMed ID: 15817892 [TBL] [Abstract][Full Text] [Related]
9. The expression of osteopontin is increased in vessels with blood-brain barrier impairment. Iwanaga Y; Ueno M; Ueki M; Huang CL; Tomita S; Okamoto Y; Ogawa T; Ueda N; Maekawa N; Sakamoto H Neuropathol Appl Neurobiol; 2008 Apr; 34(2):145-54. PubMed ID: 17973907 [TBL] [Abstract][Full Text] [Related]
10. Expression of glucose transporter-1 and aquaporin-4 in the cerebral cortex of stroke-prone spontaneously hypertensive rats in relation to the blood-brain barrier function. Ishida H; Takemori K; Dote K; Ito H Am J Hypertens; 2006 Jan; 19(1):33-9. PubMed ID: 16461188 [TBL] [Abstract][Full Text] [Related]
11. The expression of P-glycoprotein is increased in vessels with blood-brain barrier impairment in a stroke-prone hypertensive model. Ueno M; Nakagawa T; Huang CL; Ueki M; Kusaka T; Hosomi N; Kanenishi K; Onodera M; Wu B; Sakamoto H Neuropathol Appl Neurobiol; 2009 Apr; 35(2):147-55. PubMed ID: 19284476 [TBL] [Abstract][Full Text] [Related]
12. Acetylsalicylic acid provides cerebrovascular protection from oxidant damage in salt-loaded stroke-prone rats. Ishizuka T; Niwa A; Tabuchi M; Ooshima K; Higashino H Life Sci; 2008 Mar; 82(13-14):806-15. PubMed ID: 18313079 [TBL] [Abstract][Full Text] [Related]
13. Oral intake of hydrogen-rich water ameliorated chlorpyrifos-induced neurotoxicity in rats. Wang T; Zhao L; Liu M; Xie F; Ma X; Zhao P; Liu Y; Li J; Wang M; Yang Z; Zhang Y Toxicol Appl Pharmacol; 2014 Oct; 280(1):169-76. PubMed ID: 24967689 [TBL] [Abstract][Full Text] [Related]
14. Blood-brain barrier is impaired in the hippocampus of young adult spontaneously hypertensive rats. Ueno M; Sakamoto H; Tomimoto H; Akiguchi I; Onodera M; Huang CL; Kanenishi K Acta Neuropathol; 2004 Jun; 107(6):532-8. PubMed ID: 15042385 [TBL] [Abstract][Full Text] [Related]
15. Olmesartan reduces oxidative stress in the brain of stroke-prone spontaneously hypertensive rats assessed by an in vivo ESR method. Araki S; Hirooka Y; Kishi T; Yasukawa K; Utsumi H; Sunagawa K Hypertens Res; 2009 Dec; 32(12):1091-6. PubMed ID: 19763130 [TBL] [Abstract][Full Text] [Related]
16. Short-term treatment of stroke-prone spontaneously hypertensive rats with an AT1 receptor blocker protects against hypertensive end-organ damage by prolonged inhibition of the renin-angiotensin system. Hamaguchi R; Takemori K; Inoue T; Masuno K; Ito H Clin Exp Pharmacol Physiol; 2008 Oct; 35(10):1151-5. PubMed ID: 18518883 [TBL] [Abstract][Full Text] [Related]
17. The expression of CD36 in vessels with blood-brain barrier impairment in a stroke-prone hypertensive model. Ueno M; Nakagawa T; Nagai Y; Nishi N; Kusaka T; Kanenishi K; Onodera M; Hosomi N; Huang C; Yokomise H; Tomimoto H; Sakamoto H Neuropathol Appl Neurobiol; 2011 Dec; 37(7):727-37. PubMed ID: 21418266 [TBL] [Abstract][Full Text] [Related]
18. Differential modulation of uncoupling protein 2 in kidneys of stroke-prone spontaneously hypertensive rats under high-salt/low-potassium diet. Di Castro S; Scarpino S; Marchitti S; Bianchi F; Stanzione R; Cotugno M; Sironi L; Gelosa P; Duranti E; Ruco L; Volpe M; Rubattu S Hypertension; 2013 Feb; 61(2):534-41. PubMed ID: 23297375 [TBL] [Abstract][Full Text] [Related]
19. Increased susceptibility to osmotic disruption of the blood-brain barrier in chronic hypertension. Tamaki K; Sadoshima S; Heistad DD Hypertension; 1984; 6(5):633-8. PubMed ID: 6500670 [TBL] [Abstract][Full Text] [Related]
20. Protective effect of resveratrol on oxidative damage in male and female stroke-prone spontaneously hypertensive rats. Mizutani K; Ikeda K; Kawai Y; Yamori Y Clin Exp Pharmacol Physiol; 2001; 28(1-2):55-9. PubMed ID: 11153537 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]