BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 25925989)

  • 1. Transgenic systems for unequivocal identification of cardiac myocyte nuclei and analysis of cardiomyocyte cell cycle status.
    Raulf A; Horder H; Tarnawski L; Geisen C; Ottersbach A; Röll W; Jovinge S; Fleischmann BK; Hesse M
    Basic Res Cardiol; 2015 May; 110(3):33. PubMed ID: 25925989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Midbody Positioning and Distance Between Daughter Nuclei Enable Unequivocal Identification of Cardiomyocyte Cell Division in Mice.
    Hesse M; Doengi M; Becker A; Kimura K; Voeltz N; Stein V; Fleischmann BK
    Circ Res; 2018 Oct; 123(9):1039-1052. PubMed ID: 30355161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualization of Cell Cycle Variations and Determination of Nucleation in Postnatal Cardiomyocytes.
    Raulf A; Voeltz N; Korzus D; Fleischmann BK; Hesse M
    J Vis Exp; 2017 Feb; (120):. PubMed ID: 28287537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-lapse imaging of cell cycle dynamics during development in living cardiomyocyte.
    Hashimoto H; Yuasa S; Tabata H; Tohyama S; Hayashiji N; Hattori F; Muraoka N; Egashira T; Okata S; Yae K; Seki T; Nishiyama T; Nakajima K; Sakaue-Sawano A; Miyawaki A; Fukuda K
    J Mol Cell Cardiol; 2014 Jul; 72():241-9. PubMed ID: 24704900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of embryonic stem cell-derived pacemaker and atrial cardiomyocytes.
    Kolossov E; Lu Z; Drobinskaya I; Gassanov N; Duan Y; Sauer H; Manzke O; Bloch W; Bohlen H; Hescheler J; Fleischmann BK
    FASEB J; 2005 Apr; 19(6):577-9. PubMed ID: 15659535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiomyocyte cell cycle control and growth estimation in vivo--an analysis based on cardiomyocyte nuclei.
    Walsh S; Pontén A; Fleischmann BK; Jovinge S
    Cardiovasc Res; 2010 Jun; 86(3):365-73. PubMed ID: 20071355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cardiomyocyte cell cycling, maturation, and growth by multinucleation in postnatal swine.
    Velayutham N; Alfieri CM; Agnew EJ; Riggs KW; Baker RS; Ponny SR; Zafar F; Yutzey KE
    J Mol Cell Cardiol; 2020 Sep; 146():95-108. PubMed ID: 32710980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repressive histone methylation regulates cardiac myocyte cell cycle exit.
    El-Nachef D; Oyama K; Wu YY; Freeman M; Zhang Y; MacLellan WR
    J Mol Cell Cardiol; 2018 Aug; 121():1-12. PubMed ID: 29800554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone marrow cells transdifferentiate to cardiomyocytes when introduced into the embryonic heart.
    Eisenberg CA; Burch JB; Eisenberg LM
    Stem Cells; 2006 May; 24(5):1236-45. PubMed ID: 16410395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. C-kit expression identifies cardiac precursor cells in neonatal mice.
    Craven M; Kotlikoff MI; Nadworny AS
    Methods Mol Biol; 2012; 843():177-89. PubMed ID: 22222532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell cycle regulation in mouse heart during embryonic and postnatal stages.
    Ikenishi A; Okayama H; Iwamoto N; Yoshitome S; Tane S; Nakamura K; Obayashi T; Hayashi T; Takeuchi T
    Dev Growth Differ; 2012 Oct; 54(8):731-8. PubMed ID: 22957921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemically induced cardiomyogenesis of mouse embryonic stem cells.
    Berkessel A; Seelig B; Schwengberg S; Hescheler J; Sachinidis A
    Chembiochem; 2010 Jan; 11(2):208-17. PubMed ID: 20039251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional regulation of cardiac progenitor cell populations.
    Masino AM; Gallardo TD; Wilcox CA; Olson EN; Williams RS; Garry DJ
    Circ Res; 2004 Aug; 95(4):389-97. PubMed ID: 15242968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of cardiomyocyte nuclei and assessment of ploidy for the analysis of cell turnover.
    Bergmann O; Zdunek S; Alkass K; Druid H; Bernard S; Frisén J
    Exp Cell Res; 2011 Jan; 317(2):188-94. PubMed ID: 20828558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TERT over-expression affects the growth of myocardial tissue derived from mouse embryonic stem cells.
    Brandt S
    Differentiation; 2010 Jan; 79(1):1-8. PubMed ID: 19811869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Generation of a P19-alphaMHC-EGFP reporter line and cardiomyocyte differentiation].
    Gong J; Zhang QJ; Wang J; Sun FR; Qian LM; Kong XQ; Yang R; Sheng YH; Cao KJ
    Zhonghua Xin Xue Guan Bing Za Zhi; 2008 Aug; 36(8):691-4. PubMed ID: 19100108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological pacemakers: characterization in an in vitro coculture model.
    Hannes T; Halbach M; Nazzal R; Frenzel L; Saric T; Khalil M; Hescheler J; Brockmeier K; Pillekamp F
    J Electrocardiol; 2008; 41(6):562-6. PubMed ID: 18790503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional activity of the carboxyl-terminally extended oxytocin precursor Peptide during cardiac differentiation of embryonic stem cells.
    Gassanov N; Devost D; Danalache B; Noiseux N; Jankowski M; Zingg HH; Gutkowska J
    Stem Cells; 2008 Jan; 26(1):45-54. PubMed ID: 17951221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global transcriptome analysis of murine embryonic stem cell-derived cardiomyocytes.
    Doss MX; Winkler J; Chen S; Hippler-Altenburg R; Sotiriadou I; Halbach M; Pfannkuche K; Liang H; Schulz H; Hummel O; Hübner N; Rottscheidt R; Hescheler J; Sachinidis A
    Genome Biol; 2007; 8(4):R56. PubMed ID: 17428332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endothelin induces differentiation of ANP-EGFP expressing embryonic stem cells towards a pacemaker phenotype.
    Gassanov N; Er F; Zagidullin N; Hoppe UC
    FASEB J; 2004 Nov; 18(14):1710-2. PubMed ID: 15345687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.