These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 25926036)
1. Functional connectivity alteration after real-time fMRI motor imagery training through self-regulation of activities of the right premotor cortex. Xie F; Xu L; Long Z; Yao L; Wu X BMC Neurosci; 2015 May; 16():29. PubMed ID: 25926036 [TBL] [Abstract][Full Text] [Related]
2. Modulation of functional network with real-time fMRI feedback training of right premotor cortex activity. Hui M; Zhang H; Ge R; Yao L; Long Z Neuropsychologia; 2014 Sep; 62():111-23. PubMed ID: 25058055 [TBL] [Abstract][Full Text] [Related]
3. Effects of neurofeedback on the activities of motor-related areas by using motor execution and imagery. Yang H; Hu Z; Imai F; Yang Y; Ogawa K Neurosci Lett; 2021 Feb; 746():135653. PubMed ID: 33482311 [TBL] [Abstract][Full Text] [Related]
4. Higher-order Brain Areas Associated with Real-time Functional MRI Neurofeedback Training of the Somato-motor Cortex. Auer T; Dewiputri WI; Frahm J; Schweizer R Neuroscience; 2018 May; 378():22-33. PubMed ID: 27133575 [TBL] [Abstract][Full Text] [Related]
5. Evidence for premotor cortex activity during dynamic visuospatial imagery from single-trial functional magnetic resonance imaging and event-related slow cortical potentials. Lamm C; Windischberger C; Leodolter U; Moser E; Bauer H Neuroimage; 2001 Aug; 14(2):268-83. PubMed ID: 11467902 [TBL] [Abstract][Full Text] [Related]
6. Dynamic parieto-premotor network for mental image transformation revealed by simultaneous EEG and fMRI measurement. Sasaoka T; Mizuhara H; Inui T J Cogn Neurosci; 2014 Feb; 26(2):232-46. PubMed ID: 24116844 [TBL] [Abstract][Full Text] [Related]
7. Reorganization and enhanced functional connectivity of motor areas in repetitive ankle movements after training in locomotor attention. Sacco K; Cauda F; D'Agata F; Mate D; Duca S; Geminiani G Brain Res; 2009 Nov; 1297():124-34. PubMed ID: 19703428 [TBL] [Abstract][Full Text] [Related]
8. Drawing lines while imagining circles: Neural basis of the bimanual coupling effect during motor execution and motor imagery. Garbarini F; D'Agata F; Piedimonte A; Sacco K; Rabuffetti M; Tam F; Cauda F; Pia L; Geminiani G; Duca S; Graham SJ; Berti A Neuroimage; 2014 Mar; 88():100-12. PubMed ID: 24188808 [TBL] [Abstract][Full Text] [Related]
9. Investigation of fMRI neurofeedback of differential primary motor cortex activity using kinesthetic motor imagery. Chiew M; LaConte SM; Graham SJ Neuroimage; 2012 May; 61(1):21-31. PubMed ID: 22401758 [TBL] [Abstract][Full Text] [Related]
10. Functional properties of brain areas associated with motor execution and imagery. Hanakawa T; Immisch I; Toma K; Dimyan MA; Van Gelderen P; Hallett M J Neurophysiol; 2003 Feb; 89(2):989-1002. PubMed ID: 12574475 [TBL] [Abstract][Full Text] [Related]
11. Neural topography and content of movement representations. de Lange FP; Hagoort P; Toni I J Cogn Neurosci; 2005 Jan; 17(1):97-112. PubMed ID: 15701242 [TBL] [Abstract][Full Text] [Related]
12. Structural and functional connectivity changes in response to short-term neurofeedback training with motor imagery. Marins T; Rodrigues EC; Bortolini T; Melo B; Moll J; Tovar-Moll F Neuroimage; 2019 Jul; 194():283-290. PubMed ID: 30898654 [TBL] [Abstract][Full Text] [Related]
13. Action affordances and visuo-spatial complexity in motor imagery: An fMRI study. Schulz L; Ischebeck A; Wriessnegger SC; Steyrl D; Müller-Putz GR Brain Cogn; 2018 Jul; 124():37-46. PubMed ID: 29723681 [TBL] [Abstract][Full Text] [Related]
14. Self-Modulation of Premotor Cortex Interhemispheric Connectivity in a Real-Time Functional Magnetic Resonance Imaging Neurofeedback Study Using an Adaptive Approach. Pereira J; Direito B; Sayal A; Ferreira C; Castelo-Branco M Brain Connect; 2019 Nov; 9(9):662-672. PubMed ID: 31547673 [TBL] [Abstract][Full Text] [Related]
15. Subjective vividness of motor imagery has a neural signature in human premotor and parietal cortex. Zabicki A; de Haas B; Zentgraf K; Stark R; Munzert J; Krüger B Neuroimage; 2019 Aug; 197():273-283. PubMed ID: 31051294 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of effective connectivity of motor areas during motor imagery and execution using conditional Granger causality. Gao Q; Duan X; Chen H Neuroimage; 2011 Jan; 54(2):1280-8. PubMed ID: 20828626 [TBL] [Abstract][Full Text] [Related]
17. Motor execution and motor imagery: a comparison of functional connectivity patterns based on graph theory. Xu L; Zhang H; Hui M; Long Z; Jin Z; Liu Y; Yao L Neuroscience; 2014 Mar; 261():184-94. PubMed ID: 24333970 [TBL] [Abstract][Full Text] [Related]
18. Effector-independent brain activity during motor imagery of the upper and lower limbs: an fMRI study. Mizuguchi N; Nakata H; Kanosue K Neurosci Lett; 2014 Oct; 581():69-74. PubMed ID: 25150928 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of the effective connectivity of supplementary motor areas during motor imagery using Granger causality mapping. Chen H; Yang Q; Liao W; Gong Q; Shen S Neuroimage; 2009 Oct; 47(4):1844-53. PubMed ID: 19540349 [TBL] [Abstract][Full Text] [Related]
20. Modulation of hand motor-related area during motor imagery and motor execution before and after middle 2/5 of the MS6 line scalp acupuncture stimulation: An fMRI study. Zanardi R; Maieron M; Tomasino B Brain Cogn; 2016 Mar; 103():1-11. PubMed ID: 26799679 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]