BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 2592645)

  • 1. Effect of copper loading of preruminant calves on intracellular distribution of hepatic copper, zinc, iron, and molybdenum.
    Jenkins KJ
    J Dairy Sci; 1989 Sep; 72(9):2346-50. PubMed ID: 2592645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tolerance of the calf for excess copper in milk replacer.
    Jenkins KJ; Hidiroglou M
    J Dairy Sci; 1989 Jan; 72(1):150-6. PubMed ID: 2925941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular distribution of copper in the liver of normal and copper loaded sheep.
    Gooneratne SR; Howell JM; Gawthorne J
    Res Vet Sci; 1979 Jul; 27(1):30-7. PubMed ID: 504807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular distribution of copper and zinc in the liver of copper-exposed cattle from northwest Spain.
    López-Alonso M; Prieto F; Miranda M; Castillo C; Hernández JR; Benedito JL
    Vet J; 2005 Nov; 170(3):332-8. PubMed ID: 16266846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of dietary copper and molybdenum on copper status, cytokine production, and humoral immune response of calves.
    Gengelbach GP; Spears JW
    J Dairy Sci; 1998 Dec; 81(12):3286-92. PubMed ID: 9891274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effectiveness of using supplementary zinc and molybdenum to reduce the copper content in the liver of hypercuprotic sheep.
    Van Ryssen JB
    J S Afr Vet Assoc; 1994 Jun; 65(2):59-63. PubMed ID: 7776335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Biochemistry of the trace elements Zn, Cu, Mn, Mo, Cr, and Co: distribution, binding, and regulation by adrenal hormones].
    Günther T; Ruhe B; Schmalbeck J; Tehrani N
    Z Klin Chem Klin Biochem; 1974 Jul; 12(7):327-35. PubMed ID: 4428846
    [No Abstract]   [Full Text] [Related]  

  • 8. Copper metabolism in LEC rats aged 30 and 80 days old: induction of Cu-metallothionein and status of zinc and iron.
    Sugawara N; Sugawara C; Sato M; Katakura M; Takahashi H; Mori M
    Res Commun Chem Pathol Pharmacol; 1991 Jun; 72(3):353-62. PubMed ID: 1947438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of dietary soybean versus skim milk protein on plasma and hepatic concentrations of zinc in veal calves.
    Xu C; Wensing T; Beynen AC
    J Dairy Sci; 1997 Sep; 80(9):2156-61. PubMed ID: 9313159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue composition and trace mineral content of the dam and litter under low dietary zinc intake during gestation and lactation of first-litter gilts.
    Kalinowski J; Chavez ER
    J Trace Elem Electrolytes Health Dis; 1991 Mar; 5(1):35-46. PubMed ID: 1822325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of excess dietary copper on lipid composition of calf tissues.
    Jenkins KJ; Kramer JK
    J Dairy Sci; 1989 Oct; 72(10):2582-91. PubMed ID: 2600225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of tetrathiomolybdate administration on the excretion of copper, zinc, iron and molybdenum in sheep bile.
    Gooneratne SR; Chaplin RK; Trent AM; Christensen DA
    Br Vet J; 1989; 145(1):62-72. PubMed ID: 2920278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of iron and copper in the liver and spleen of veal calves in relation to the concentration of iron in the diet.
    Abdelrahim AI; Wensing T; Schotman AJ
    Res Vet Sci; 1986 Mar; 40(2):209-11. PubMed ID: 3704338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concentration of copper, iron, manganese and zinc in muscle, fat and bone tissue of lambs of the breed German Merino Landsheep in the course of the growing period and different feeding intensities.
    Bellof G; Most E; Pallauf J
    J Anim Physiol Anim Nutr (Berl); 2007 Apr; 91(3-4):100-8. PubMed ID: 17355339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular distribution of zinc and zinc-65 in calves receiving high but nontoxic amounts of zinc.
    Kincaid RL; Miller WJ; Gentry RP; Neathery MW; Hampton DL
    J Dairy Sci; 1976 Mar; 59(3):552-5. PubMed ID: 1262572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tolerance of the preruminant calf for excess manganese or zinc in milk replacer.
    Jenkins KJ; Hidiroglou M
    J Dairy Sci; 1991 Mar; 74(3):1047-53. PubMed ID: 2071705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteins involved in iron metabolism in beef cattle are affected by copper deficiency in combination with high dietary manganese, but not by copper deficiency alone.
    Hansen SL; Trakooljul N; Liu HC; Hicks JA; Ashwell MS; Spears JW
    J Anim Sci; 2010 Jan; 88(1):275-83. PubMed ID: 19820055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative study of zinc, copper, manganese, and iron concentrations in organs of zinc-deficient rats and rats treated neonatally with l-monosodium glutamate.
    Sakai T; Miki F; Wariishi M; Yamamoto S
    Biol Trace Elem Res; 2004 Feb; 97(2):163-82. PubMed ID: 14985626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copper metabolism of holstein and jersey cows and heifers fed diets high in cupric sulfate or copper proteinate.
    Du Z; Hemken RW; Harmon RJ
    J Dairy Sci; 1996 Oct; 79(10):1873-80. PubMed ID: 8923258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The clinical and experimental study on postburn metabolic characteristics of zinc and its influence on copper, iron and calcium].
    Guo Z; Li L; Zhao L
    Zhonghua Shao Shang Za Zhi; 2000 Oct; 16(5):286-8. PubMed ID: 11876887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.