These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 2592645)

  • 21. Changes in lipid composition of calf tissues by excess dietary zinc.
    Jenkins KJ; Kramer JK
    J Dairy Sci; 1992 May; 75(5):1313-9. PubMed ID: 1597586
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Serum IgG and IgM responses to sheep red blood cells (SRBC) in weaned calves fed milk supplemented with Zn and Cu.
    Prasad T; Kundu MS
    Nutrition; 1995; 11(5 Suppl):712-5. PubMed ID: 8748260
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluating copper lysine and copper sulfate sources for heifers.
    Rabiansky PA; McDowell LR; Velasquez-Pereira J; Wilkinson NS; Percival SS; Martin FG; Bates DB; Johnson AB; Batra TR; Salgado-Madriz E
    J Dairy Sci; 1999 Dec; 82(12):2642-50. PubMed ID: 10629812
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sequential changes in Fe, Cu, and Zn in target organs during early Coxsackievirus B3 infection in mice.
    Ilbäck NG; Benyamin G; Lindh U; Friman G
    Biol Trace Elem Res; 2003 Feb; 91(2):111-24. PubMed ID: 12719606
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Subcellular distribution of hepatic copper in beef cattle receiving high copper supplementation.
    López-Alonso M; Carbajales P; Miranda M; Pereira V
    J Trace Elem Med Biol; 2017 Jul; 42():111-116. PubMed ID: 28595783
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of dietary zinc and copper on digestive enzyme activity and intestinal morphology in weaned pigs.
    Hedemann MS; Jensen BB; Poulsen HD
    J Anim Sci; 2006 Dec; 84(12):3310-20. PubMed ID: 17093223
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intracellular distribution of hepatic copper in macular mutant mice. An animal model of Menkes' kinky-hair disease.
    Shiraishi N; Taguchi T; Kinebuchi H
    Biol Trace Elem Res; 1993; 37(2-3):179-86. PubMed ID: 7688531
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of dietary Cu, Mo and S on urinary Cu and Zn excretion in Simmental and Angus cattle.
    Gooneratne SR; Laarveld B; Pathirana KK; Christensen DA
    Res Vet Sci; 2011 Dec; 91(3):e116-20. PubMed ID: 21338998
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hepatic, placental, and fetal trace elements following molybdenum supplementation during gestation.
    Fungwe TV; Buddingh F; Yang MT; Yang SP
    Biol Trace Elem Res; 1989 Nov; 22(2):189-99. PubMed ID: 2484239
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hepatic concentrations of zinc, copper and manganese in infants with extrahepatic biliary atresia.
    Bayliss EA; Hambidge KM; Sokol RJ; Stewart B; Lilly JR
    J Trace Elem Med Biol; 1995 Mar; 9(1):40-3. PubMed ID: 8846156
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Distribution of Cu, Zn, and Fe in the soluble fraction of the kidney in normal, copper-poisoned, and thiomolybdate-treated sheep.
    Gooneratne SR; Gawthorne JM; Howell JM
    J Inorg Biochem; 1989 Jan; 35(1):37-53. PubMed ID: 2709001
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The influence of dietary iron and molybdenum on copper metabolism in calves.
    Humphries WR; Phillippo M; Young BW; Bremner I
    Br J Nutr; 1983 Jan; 49(1):77-86. PubMed ID: 6821692
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Toxicity of ammonium molybdate added to drinking water of calves.
    Kincaid RL
    J Dairy Sci; 1980 Apr; 63(4):608-10. PubMed ID: 7381083
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of copper deficiency with or without high dietary iron or molybdenum on immune function of cattle.
    Ward JD; Gengelbach GP; Spears JW
    J Anim Sci; 1997 May; 75(5):1400-8. PubMed ID: 9159290
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Subcellular distribution of copper in the kidneys of normal, copper-poisoned, and thiomolybdate-treated sheep.
    Gooneratne SR; Howell JM; Gawthorne JM; Kumaratilake JS
    J Inorg Biochem; 1989 Jan; 35(1):23-36. PubMed ID: 2709000
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cupric oxide needles for grazing cattle consuming low-copper, high-molybdenum forage and high-sulfate water.
    Cameron HJ; Boila RJ; McNichol LW; Stanger NE
    J Anim Sci; 1989 Jan; 67(1):252-61. PubMed ID: 2925546
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The toxicity of parenteral copper in the chick: dependence on route of administration.
    McCormick CC; Fleet JC
    J Nutr; 1988 Nov; 118(11):1398-402. PubMed ID: 3193257
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modest copper supplementation blocks molybdenosis in cattle.
    Raisbeck MF; Siemion RS; Smith MA
    J Vet Diagn Invest; 2006 Nov; 18(6):566-72. PubMed ID: 17121084
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Interaction among the trace elements zinc, copper and iron after depletion and repletion of dairy cows with zinc].
    Kirchgessner M; Schwarz FJ; Roth HP; Schwarz WA
    Arch Tierernahr; 1978 Dec; 28(11-12):723-33. PubMed ID: 742974
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The influence of molybdenum on the copper metabolism of the rat at different Cu levels of the diet.
    Nederbragt H
    Br J Nutr; 1980 Mar; 43(2):329-38. PubMed ID: 7378340
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.