These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 25926468)
1. Modulation of spinal motor output by initial arm postures in anesthetized monkeys. Yaguchi H; Takei T; Kowalski D; Suzuki T; Mabuchi K; Seki K J Neurosci; 2015 Apr; 35(17):6937-45. PubMed ID: 25926468 [TBL] [Abstract][Full Text] [Related]
2. Cortico-motoneuronal output to intrinsic hand muscles is differentially influenced by static changes in shoulder positions. Dominici F; Popa T; Ginanneschi F; Mazzocchio R; Rossi A Exp Brain Res; 2005 Aug; 164(4):500-4. PubMed ID: 15883808 [TBL] [Abstract][Full Text] [Related]
3. Distribution and latency of muscle responses to transcranial magnetic stimulation of motor cortex after spinal cord injury in humans. Calancie B; Alexeeva N; Broton JG; Suys S; Hall A; Klose KJ J Neurotrauma; 1999 Jan; 16(1):49-67. PubMed ID: 9989466 [TBL] [Abstract][Full Text] [Related]
4. Forelimb movements and muscle responses evoked by microstimulation of cervical spinal cord in sedated monkeys. Moritz CT; Lucas TH; Perlmutter SI; Fetz EE J Neurophysiol; 2007 Jan; 97(1):110-20. PubMed ID: 16971685 [TBL] [Abstract][Full Text] [Related]
5. Arm-movement-related neurons in the primate superior colliculus and underlying reticular formation: comparison of neuronal activity with EMGs of muscles of the shoulder, arm and trunk during reaching. Werner W; Dannenberg S; Hoffmann KP Exp Brain Res; 1997 Jun; 115(2):191-205. PubMed ID: 9224849 [TBL] [Abstract][Full Text] [Related]
6. Selectivity and excitability of upper-limb muscle activation during cervical transcutaneous spinal cord stimulation in humans. de Freitas RM; Sasaki A; Sayenko DG; Masugi Y; Nomura T; Nakazawa K; Milosevic M J Appl Physiol (1985); 2021 Aug; 131(2):746-759. PubMed ID: 34138648 [TBL] [Abstract][Full Text] [Related]
7. Increases in human motoneuron excitability after cervical spinal cord injury depend on the level of injury. Thomas CK; Häger CK; Klein CS J Neurophysiol; 2017 Feb; 117(2):684-691. PubMed ID: 27852734 [TBL] [Abstract][Full Text] [Related]
8. Characteristics of motor programs underlying arm movements in monkeys. Polit A; Bizzi E J Neurophysiol; 1979 Jan; 42(1 Pt 1):183-94. PubMed ID: 107279 [TBL] [Abstract][Full Text] [Related]
9. Corticomotor excitability of arm muscles modulates according to static position and orientation of the upper limb. Mogk JP; Rogers LM; Murray WM; Perreault EJ; Stinear JW Clin Neurophysiol; 2014 Oct; 125(10):2046-54. PubMed ID: 24630543 [TBL] [Abstract][Full Text] [Related]
10. Hindlimb motor responses evoked by microstimulation of the lumbar dorsal root ganglia during quiet standing. Urbin MA; Liu M; Bottorff EC; Gaunt RA; Fisher LE; Weber DJ J Neural Eng; 2019 Dec; 17(1):016019. PubMed ID: 31597128 [TBL] [Abstract][Full Text] [Related]
11. Changes in corticomotor excitability of hand muscles in relation to static shoulder positions. Ginanneschi F; Del Santo F; Dominici F; Gelli F; Mazzocchio R; Rossi A Exp Brain Res; 2005 Mar; 161(3):374-82. PubMed ID: 15517216 [TBL] [Abstract][Full Text] [Related]
12. Threshold control of arm posture and movement adaptation to load. Foisy M; Feldman AG Exp Brain Res; 2006 Nov; 175(4):726-44. PubMed ID: 16847611 [TBL] [Abstract][Full Text] [Related]
13. Wireless control of intraspinal microstimulation in a rodent model of paralysis. Grahn PJ; Lee KH; Kasasbeh A; Mallory GW; Hachmann JT; Dube JR; Kimble CJ; Lobel DA; Bieber A; Jeong JH; Bennet KE; Lujan JL J Neurosurg; 2015 Jul; 123(1):232-242. PubMed ID: 25479124 [TBL] [Abstract][Full Text] [Related]
14. Changes in motor cortex activity during reaching movements with similar hand paths but different arm postures. Scott SH; Kalaska JF J Neurophysiol; 1995 Jun; 73(6):2563-7. PubMed ID: 7666162 [TBL] [Abstract][Full Text] [Related]
15. Shaping appropriate locomotive motor output through interlimb neural pathway within spinal cord in humans. Kawashima N; Nozaki D; Abe MO; Nakazawa K J Neurophysiol; 2008 Jun; 99(6):2946-55. PubMed ID: 18450579 [TBL] [Abstract][Full Text] [Related]
16. Central cord syndrome of cervical spinal cord injury: widespread changes in muscle recruitment studied by voluntary contractions and transcranial magnetic stimulation. Alexeeva N; Broton JG; Suys S; Calancie B Exp Neurol; 1997 Dec; 148(2):399-406. PubMed ID: 9417819 [TBL] [Abstract][Full Text] [Related]
17. Forelimb force direction and magnitude independently controlled by spinal modules in the macaque. Yaron A; Kowalski D; Yaguchi H; Takei T; Seki K Proc Natl Acad Sci U S A; 2020 Nov; 117(44):27655-27666. PubMed ID: 33060294 [TBL] [Abstract][Full Text] [Related]
18. A common neural element receiving rhythmic arm and leg activity as assessed by reflex modulation in arm muscles. Sasada S; Tazoe T; Nakajima T; Futatsubashi G; Ohtsuka H; Suzuki S; Zehr EP; Komiyama T J Neurophysiol; 2016 Apr; 115(4):2065-75. PubMed ID: 26961103 [TBL] [Abstract][Full Text] [Related]
19. Recruitment of spinal motor pools during voluntary movements versus stepping after human spinal cord injury. Maegele M; Müller S; Wernig A; Edgerton VR; Harkema SJ J Neurotrauma; 2002 Oct; 19(10):1217-29. PubMed ID: 12427330 [TBL] [Abstract][Full Text] [Related]
20. Motor co-ordinates in primate red nucleus: preferential relation to muscle activation versus kinematic variables. Miller LE; Houk JC J Physiol; 1995 Oct; 488 ( Pt 2)(Pt 2):533-48. PubMed ID: 8568692 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]