BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

541 related articles for article (PubMed ID: 25926645)

  • 21. NEAT1 modulates herpes simplex virus-1 replication by regulating viral gene transcription.
    Wang Z; Fan P; Zhao Y; Zhang S; Lu J; Xie W; Jiang Y; Lei F; Xu N; Zhang Y
    Cell Mol Life Sci; 2017 Mar; 74(6):1117-1131. PubMed ID: 27783096
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Epstein Barr virus circRNAome.
    Ungerleider N; Concha M; Lin Z; Roberts C; Wang X; Cao S; Baddoo M; Moss WN; Yu Y; Seddon M; Lehman T; Tibbetts S; Renne R; Dong Y; Flemington EK
    PLoS Pathog; 2018 Aug; 14(8):e1007206. PubMed ID: 30080890
    [TBL] [Abstract][Full Text] [Related]  

  • 23. EBV Noncoding RNAs.
    Skalsky RL; Cullen BR
    Curr Top Microbiol Immunol; 2015; 391():181-217. PubMed ID: 26428375
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kaposi's Sarcoma-Associated Herpesvirus mRNA Accumulation in Nuclear Foci Is Influenced by Viral DNA Replication and Viral Noncoding Polyadenylated Nuclear RNA.
    Vallery TK; Withers JB; Andoh JA; Steitz JA
    J Virol; 2018 Jul; 92(13):. PubMed ID: 29643239
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein-RNA Interactome Analysis Reveals Wide Association of Kaposi's Sarcoma-Associated Herpesvirus ORF57 with Host Noncoding RNAs and Polysomes.
    Alvarado-Hernandez B; Ma Y; Sharma NR; Majerciak V; Lobanov A; Cam M; Zhu J; Zheng ZM
    J Virol; 2022 Feb; 96(3):e0178221. PubMed ID: 34787459
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lytic cycle gene regulation of Epstein-Barr virus.
    Amon W; Binné UK; Bryant H; Jenkins PJ; Karstegl CE; Farrell PJ
    J Virol; 2004 Dec; 78(24):13460-9. PubMed ID: 15564457
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcriptome analysis of Kaposi's sarcoma-associated herpesvirus during de novo primary infection of human B and endothelial cells.
    Purushothaman P; Thakker S; Verma SC
    J Virol; 2015 Mar; 89(6):3093-111. PubMed ID: 25552714
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Translesion Polymerase Pol η Is Required for Efficient Epstein-Barr Virus Infectivity and Is Regulated by the Viral Deubiquitinating Enzyme BPLF1.
    Dyson OF; Pagano JS; Whitehurst CB
    J Virol; 2017 Oct; 91(19):. PubMed ID: 28724765
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Epstein-Barr virus (EBV) SM protein induces and recruits cellular Sp110b to stabilize mRNAs and enhance EBV lytic gene expression.
    Nicewonger J; Suck G; Bloch D; Swaminathan S
    J Virol; 2004 Sep; 78(17):9412-22. PubMed ID: 15308735
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Latent and lytic Epstein-Barr virus replication strategies.
    Tsurumi T; Fujita M; Kudoh A
    Rev Med Virol; 2005; 15(1):3-15. PubMed ID: 15386591
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Human p32: a coactivator for Epstein-Barr virus nuclear antigen-1-mediated transcriptional activation and possible role in viral latent cycle DNA replication.
    Van Scoy S; Watakabe I; Krainer AR; Hearing J
    Virology; 2000 Sep; 275(1):145-57. PubMed ID: 11017796
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lytic cycle switches of oncogenic human gammaherpesviruses.
    Miller G; El-Guindy A; Countryman J; Ye J; Gradoville L
    Adv Cancer Res; 2007; 97():81-109. PubMed ID: 17419942
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cellular STAT3 functions via PCBP2 to restrain Epstein-Barr Virus lytic activation in B lymphocytes.
    Koganti S; Clark C; Zhi J; Li X; Chen EI; Chakrabortty S; Hill ER; Bhaduri-McIntosh S
    J Virol; 2015 May; 89(9):5002-11. PubMed ID: 25717101
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A human herpesvirus 6A-encoded microRNA: role in viral lytic replication.
    Nukui M; Mori Y; Murphy EA
    J Virol; 2015 Mar; 89(5):2615-27. PubMed ID: 25520507
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nasal NK- and T-cell lymphomas share the same type of Epstein-Barr virus latency as nasopharyngeal carcinoma and Hodgkin's disease.
    Chiang AK; Tao Q; Srivastava G; Ho FC
    Int J Cancer; 1996 Nov; 68(3):285-90. PubMed ID: 8903467
    [TBL] [Abstract][Full Text] [Related]  

  • 36. BGLF4 kinase modulates the structure and transport preference of the nuclear pore complex to facilitate nuclear import of Epstein-Barr virus lytic proteins.
    Chang CW; Lee CP; Su MT; Tsai CH; Chen MR
    J Virol; 2015 Feb; 89(3):1703-18. PubMed ID: 25410863
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The many ways Epstein-Barr virus takes advantage of the RNA tool kit.
    Lee N
    RNA Biol; 2021 May; 18(5):759-766. PubMed ID: 33517840
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiple roles of Epstein-Barr virus SM protein in lytic replication.
    Han Z; Marendy E; Wang YD; Yuan J; Sample JT; Swaminathan S
    J Virol; 2007 Apr; 81(8):4058-69. PubMed ID: 17287267
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation and dysregulation of Epstein-Barr virus latency: implications for the development of autoimmune diseases.
    Niller HH; Wolf H; Minarovits J
    Autoimmunity; 2008 May; 41(4):298-328. PubMed ID: 18432410
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Epstein-Barr virus utilizes Ikaros in regulating its latent-lytic switch in B cells.
    Iempridee T; Reusch JA; Riching A; Johannsen EC; Dovat S; Kenney SC; Mertz JE
    J Virol; 2014 May; 88(9):4811-27. PubMed ID: 24522918
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.