These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 25926838)

  • 1. Advances in plant proteomics toward improvement of crop productivity and stress resistancex.
    Hu J; Rampitsch C; Bykova NV
    Front Plant Sci; 2015; 6():209. PubMed ID: 25926838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomics of model and crop plant species: status, current limitations and strategic advances for crop improvement.
    Vanderschuren H; Lentz E; Zainuddin I; Gruissem W
    J Proteomics; 2013 Nov; 93():5-19. PubMed ID: 23748024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current Status of Proteomic Studies on Defense Responses in Rice.
    Chen X; Bhadauria V; Ma B
    Curr Issues Mol Biol; 2016; 19():7-12. PubMed ID: 26364119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in crop proteomics: PTMs of proteins under abiotic stress.
    Wu X; Gong F; Cao D; Hu X; Wang W
    Proteomics; 2016 Mar; 16(5):847-65. PubMed ID: 26616472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the responses of rice to environmental stress using proteomics.
    Singh R; Jwa NS
    J Proteome Res; 2013 Nov; 12(11):4652-69. PubMed ID: 23984864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of Post-Translational Modifications of Crop Proteins under Abiotic Stress.
    Hashiguchi A; Komatsu S
    Proteomes; 2016 Dec; 4(4):. PubMed ID: 28248251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plant cell organelle proteomics in response to abiotic stress.
    Hossain Z; Nouri MZ; Komatsu S
    J Proteome Res; 2012 Jan; 11(1):37-48. PubMed ID: 22029473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant proteomic research for improvement of food crops under stresses: a review.
    Mustafa G; Komatsu S
    Mol Omics; 2021 Dec; 17(6):860-880. PubMed ID: 34870299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Proteomics in Crop Stress Tolerance.
    Ahmad P; Abdel Latef AA; Rasool S; Akram NA; Ashraf M; Gucel S
    Front Plant Sci; 2016; 7():1336. PubMed ID: 27660631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant subcellular proteomics: Application for exploring optimal cell function in soybean.
    Wang X; Komatsu S
    J Proteomics; 2016 Jun; 143():45-56. PubMed ID: 26808589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact assessment of major abiotic stresses on the proteome profiling of some important crop plants: a current update.
    Sharma JK; Sihmar M; Santal AR; Singh NP
    Biotechnol Genet Eng Rev; 2019 Oct; 35(2):126-160. PubMed ID: 31478455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomics and Metabolomics: Two Emerging Areas for Legume Improvement.
    Ramalingam A; Kudapa H; Pazhamala LT; Weckwerth W; Varshney RK
    Front Plant Sci; 2015; 6():1116. PubMed ID: 26734026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organ-specific proteome analysis for identification of abiotic stress response mechanism in crop.
    Komatsu S; Hossain Z
    Front Plant Sci; 2013; 4():71. PubMed ID: 23565117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Proteomic View on the Role of Legume Symbiotic Interactions.
    Larrainzar E; Wienkoop S
    Front Plant Sci; 2017; 8():1267. PubMed ID: 28769967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant responses to ambient temperature fluctuations and water-limiting conditions: A proteome-wide perspective.
    Johnová P; Skalák J; Saiz-Fernández I; Brzobohatý B
    Biochim Biophys Acta; 2016 Aug; 1864(8):916-31. PubMed ID: 26861773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of Combined Abiotic and Biotic Stresses on Plant Growth and Avenues for Crop Improvement by Exploiting Physio-morphological Traits.
    Pandey P; Irulappan V; Bagavathiannan MV; Senthil-Kumar M
    Front Plant Sci; 2017; 8():537. PubMed ID: 28458674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomics in commercial crops: An overview.
    Tan BC; Lim YS; Lau SE
    J Proteomics; 2017 Oct; 169():176-188. PubMed ID: 28546092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progress and challenges for abiotic stress proteomics of crop plants.
    Barkla BJ; Vera-Estrella R; Pantoja O
    Proteomics; 2013 Jun; 13(12-13):1801-15. PubMed ID: 23512887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering Crops for the Future: A Phosphoproteomics Approach.
    Kumar V; Khare T; Sharma M; Wani SH
    Curr Protein Pept Sci; 2018 Feb; 19(4):413-426. PubMed ID: 28190387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.