These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 25926838)

  • 41. Proteomics studies on stress responses in diatoms.
    Muhseen ZT; Xiong Q; Chen Z; Ge F
    Proteomics; 2015 Dec; 15(23-24):3943-53. PubMed ID: 26364674
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Elucidation of salt stress defense and tolerance mechanisms of crop plants using proteomics--current achievements and perspectives.
    Barkla BJ; Castellanos-Cervantes T; de León JL; Matros A; Mock HP; Perez-Alfocea F; Salekdeh GH; Witzel K; Zörb C
    Proteomics; 2013 Jun; 13(12-13):1885-900. PubMed ID: 23723162
    [TBL] [Abstract][Full Text] [Related]  

  • 43.
    Radhakrishnan R; Hashem A; Abd Allah EF
    Front Physiol; 2017; 8():667. PubMed ID: 28932199
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects.
    Etesami H; Maheshwari DK
    Ecotoxicol Environ Saf; 2018 Jul; 156():225-246. PubMed ID: 29554608
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Common bean proteomics: Present status and future strategies.
    Zargar SM; Mahajan R; Nazir M; Nagar P; Kim ST; Rai V; Masi A; Ahmad SM; Shah RA; Ganai NA; Agrawal GK; Rakwal R
    J Proteomics; 2017 Oct; 169():239-248. PubMed ID: 28347863
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Proteomics: a powerful tool to study plant responses to biotic stress.
    Liu Y; Lu S; Liu K; Wang S; Huang L; Guo L
    Plant Methods; 2019; 15():135. PubMed ID: 31832077
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transcription Factors Associated with Abiotic and Biotic Stress Tolerance and Their Potential for Crops Improvement.
    Baillo EH; Kimotho RN; Zhang Z; Xu P
    Genes (Basel); 2019 Sep; 10(10):. PubMed ID: 31575043
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Plant Responses to Simultaneous Biotic and Abiotic Stress: Molecular Mechanisms.
    Rejeb IB; Pastor V; Mauch-Mani B
    Plants (Basel); 2014 Oct; 3(4):458-75. PubMed ID: 27135514
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Methylglyoxal - a signaling molecule in plant abiotic stress responses.
    Mostofa MG; Ghosh A; Li ZG; Siddiqui MN; Fujita M; Tran LP
    Free Radic Biol Med; 2018 Jul; 122():96-109. PubMed ID: 29545071
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Target of rapamycin, a master regulator of multiple signalling pathways and a potential candidate gene for crop improvement.
    Bakshi A; Moin M; Madhav MS; Kirti PB
    Plant Biol (Stuttg); 2019 Mar; 21(2):190-205. PubMed ID: 30411830
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Plant Abiotic Stress Proteomics: The Major Factors Determining Alterations in Cellular Proteome.
    Kosová K; Vítámvás P; Urban MO; Prášil IT; Renaut J
    Front Plant Sci; 2018; 9():122. PubMed ID: 29472941
    [No Abstract]   [Full Text] [Related]  

  • 52. Combinatorial Interactions of Biotic and Abiotic Stresses in Plants and Their Molecular Mechanisms: Systems Biology Approach.
    Dangi AK; Sharma B; Khangwal I; Shukla P
    Mol Biotechnol; 2018 Aug; 60(8):636-650. PubMed ID: 29943149
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Roots Withstanding their Environment: Exploiting Root System Architecture Responses to Abiotic Stress to Improve Crop Tolerance.
    Koevoets IT; Venema JH; Elzenga JT; Testerink C
    Front Plant Sci; 2016; 7():1335. PubMed ID: 27630659
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A comprehensive update on Capsicum proteomics: Advances and future prospects.
    Momo J; Kumar A; Islam K; Ahmad I; Rawoof A; Ramchiary N
    J Proteomics; 2022 Jun; 261():104578. PubMed ID: 35398364
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The role of ROS signaling in cross-tolerance: from model to crop.
    Perez IB; Brown PJ
    Front Plant Sci; 2014; 5():754. PubMed ID: 25566313
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Plant Organellar Proteomics in Response to Dehydration: Turning Protein Repertoire into Insights.
    Gupta DB; Rai Y; Gayali S; Chakraborty S; Chakraborty N
    Front Plant Sci; 2016; 7():460. PubMed ID: 27148291
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Functional genomics to study stress responses in crop legumes: progress and prospects.
    Kudapa H; Ramalingam A; Nayakoti S; Chen X; Zhuang WJ; Liang X; Kahl G; Edwards D; Varshney RK
    Funct Plant Biol; 2013 Dec; 40(12):1221-1233. PubMed ID: 32481190
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Stressed to Death: The Role of Transcription Factors in Plant Programmed Cell Death Induced by Abiotic and Biotic Stimuli.
    Burke R; Schwarze J; Sherwood OL; Jnaid Y; McCabe PF; Kacprzyk J
    Front Plant Sci; 2020; 11():1235. PubMed ID: 32903426
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Free Radicals Mediated Redox Signaling in Plant Stress Tolerance.
    Rai KK; Kaushik P
    Life (Basel); 2023 Jan; 13(1):. PubMed ID: 36676153
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Achieving crop stress tolerance and improvement--an overview of genomic techniques.
    Rasool S; Ahmad P; Rehman MU; Arif A; Anjum NA
    Appl Biochem Biotechnol; 2015 Dec; 177(7):1395-408. PubMed ID: 26440315
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.