These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 25927031)

  • 61. Acquisition of neuroendocrine characteristics by prostate tumor cells is reversible: implications for prostate cancer progression.
    Cox ME; Deeble PD; Lakhani S; Parsons SJ
    Cancer Res; 1999 Aug; 59(15):3821-30. PubMed ID: 10447001
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Neuroendocrine cells in prostate cancer.
    Amorino GP; Parsons SJ
    Crit Rev Eukaryot Gene Expr; 2004; 14(4):287-300. PubMed ID: 15663358
    [TBL] [Abstract][Full Text] [Related]  

  • 63. c-MYC drives histone demethylase PHF8 during neuroendocrine differentiation and in castration-resistant prostate cancer.
    Maina PK; Shao P; Liu Q; Fazli L; Tyler S; Nasir M; Dong X; Qi HH
    Oncotarget; 2016 Nov; 7(46):75585-75602. PubMed ID: 27689328
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Interleukin-6 undergoes transition from growth inhibitor associated with neuroendocrine differentiation to stimulator accompanied by androgen receptor activation during LNCaP prostate cancer cell progression.
    Lee SO; Chun JY; Nadiminty N; Lou W; Gao AC
    Prostate; 2007 May; 67(7):764-73. PubMed ID: 17373716
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The many faces of neuroendocrine differentiation in prostate cancer progression.
    Terry S; Beltran H
    Front Oncol; 2014; 4():60. PubMed ID: 24724054
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Understanding the mechanism underlying the acquisition of radioresistance in human prostate cancer cells.
    Murata K; Saga R; Monzen S; Tsuruga E; Hasegawa K; Hosokawa Y
    Oncol Lett; 2019 Jun; 17(6):5830-5838. PubMed ID: 31186811
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Androgen deprivation induces human prostate epithelial neuroendocrine differentiation of androgen-sensitive LNCaP cells.
    Yuan TC; Veeramani S; Lin FF; Kondrikou D; Zelivianski S; Igawa T; Karan D; Batra SK; Lin MF
    Endocr Relat Cancer; 2006 Mar; 13(1):151-67. PubMed ID: 16601285
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Androgen deprivation-induced ZBTB46-PTGS1 signaling promotes neuroendocrine differentiation of prostate cancer.
    Chen WY; Zeng T; Wen YC; Yeh HL; Jiang KC; Chen WH; Zhang Q; Huang J; Liu YN
    Cancer Lett; 2019 Jan; 440-441():35-46. PubMed ID: 30312731
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Androgen deprivation causes epithelial-mesenchymal transition in the prostate: implications for androgen-deprivation therapy.
    Sun Y; Wang BE; Leong KG; Yue P; Li L; Jhunjhunwala S; Chen D; Seo K; Modrusan Z; Gao WQ; Settleman J; Johnson L
    Cancer Res; 2012 Jan; 72(2):527-36. PubMed ID: 22108827
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Posttranscriptional regulation of T-type Ca(2+) channel expression by interleukin-6 in prostate cancer cells.
    Weaver EM; Zamora FJ; Hearne JL; Martin-Caraballo M
    Cytokine; 2015 Dec; 76(2):309-320. PubMed ID: 26205261
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Gross Findings of Widespread Visceral Metastasis of Prostatic Adenocarcinoma With Neuroendocrine Features: A Case Report.
    Habibian DJ; Dao AE; Kumar S; Schiff J; Kosinski KE; Katz AE
    Urol Case Rep; 2016 Sep; 8():49-51. PubMed ID: 27489779
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Cell death under epithelial-mesenchymal transition control in prostate cancer therapeutic response.
    Begemann D; Anastos H; Kyprianou N
    Int J Urol; 2018 Apr; 25(4):318-326. PubMed ID: 29345000
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Neuroendocrine differentiation markers guide treatment sequence selection in metastatic castration-resistant prostate cancer.
    Fan L; Yang Y; Chi C; Ma X; Wang R; Gong Y; Zheng H; Pan J; Zhu Y; Dong B; Xue W
    Prostate; 2019 May; 79(6):567-573. PubMed ID: 30614033
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Androgen dependent regulation of protein kinase A subunits in prostate cancer cells.
    Kvissel AK; Ramberg H; Eide T; Svindland A; Skålhegg BS; Taskén KA
    Cell Signal; 2007 Feb; 19(2):401-9. PubMed ID: 16949795
    [TBL] [Abstract][Full Text] [Related]  

  • 75. New perspective in the management of neuroendocrine differentiation in prostate adenocarcinoma.
    Sciarra A; Cardi A; Dattilo C; Mariotti G; Di Monaco F; Di Silverio F
    Int J Clin Pract; 2006 Apr; 60(4):462-70. PubMed ID: 16620361
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Neuroendocrine differentiation in prostate cancer.
    Sun Y; Niu J; Huang J
    Am J Transl Res; 2009 Feb; 1(2):148-62. PubMed ID: 19956427
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Neuroendocrine differentiation in the 12T-10 transgenic prostate mouse model mimics endocrine differentiation of pancreatic beta cells.
    Gupta A; Wang Y; Browne C; Kim S; Case T; Paul M; Wills ML; Matusik RJ
    Prostate; 2008 Jan; 68(1):50-60. PubMed ID: 18004726
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Evaluation and clinical value of neuroendocrine differentiation in human prostatic tumors.
    Cussenot O; Villette JM; Cochand-Priollet B; Berthon P
    Prostate Suppl; 1998; 8():43-51. PubMed ID: 9690663
    [TBL] [Abstract][Full Text] [Related]  

  • 79. SOX2 boosts major tumor progression genes in prostate cancer and is a functional biomarker of lymph node metastasis.
    Russo MV; Esposito S; Tupone MG; Manzoli L; Airoldi I; Pompa P; Cindolo L; Schips L; Sorrentino C; Di Carlo E
    Oncotarget; 2016 Mar; 7(11):12372-85. PubMed ID: 26540632
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Clinical and molecular features of treatment-related neuroendocrine prostate cancer.
    Akamatsu S; Inoue T; Ogawa O; Gleave ME
    Int J Urol; 2018 Apr; 25(4):345-351. PubMed ID: 29396873
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.