BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 25927080)

  • 21. Surface plasmon resonance in surfactant coated copper sulfide nanoparticles: Role of the structure of the capping agent.
    Rabkin A; Friedman O; Golan Y
    J Colloid Interface Sci; 2015 Nov; 457():43-51. PubMed ID: 26151566
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plasmon-Coupled Whispering Gallery Modes on Nanodisk Arrays for Signal Enhancements.
    Kang TY; Lee W; Ahn H; Shin DM; Kim CS; Oh JW; Kim D; Kim K
    Sci Rep; 2017 Sep; 7(1):11737. PubMed ID: 28916835
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Homogeneous localized surface plasmon resonance inflection points for enhanced sensitivity and tracking plasmon damping in single gold bipyramids.
    Tsalu PV; Kim GW; Hong JW; Ha JW
    Nanoscale; 2018 Jul; 10(26):12554-12563. PubMed ID: 29932189
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanoring structure, spacing, and local dielectric sensitivity for plasmonic resonances in Fano resonant square lattices.
    Forcherio GT; Blake P; DeJarnette D; Roper DK
    Opt Express; 2014 Jul; 22(15):17791-803. PubMed ID: 25089400
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Second harmonic excitation spectroscopy of silver nanoparticle arrays.
    Moran AM; Sung J; Hicks EM; Van Duyne RP; Spears KG
    J Phys Chem B; 2005 Mar; 109(10):4501-6. PubMed ID: 16851525
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Study of optical phase transduction on localized surface plasmon resonance for ultrasensitive detection.
    Li CT; Chen HF; Un IW; Lee HC; Yen TJ
    Opt Express; 2012 Jan; 20(3):3250-60. PubMed ID: 22330563
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Incident-angle-modulated molecular plasmonic switches: a case of weak exciton-plasmon coupling.
    Zheng YB; Kiraly B; Cheunkar S; Huang TJ; Weiss PS
    Nano Lett; 2011 May; 11(5):2061-5. PubMed ID: 21500786
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analytical modeling of localized surface plasmon resonance in heterostructure copper sulfide nanocrystals.
    Caldwell AH; Ha DH; Ding X; Robinson RD
    J Chem Phys; 2014 Oct; 141(16):164125. PubMed ID: 25362290
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insight into the localized surface plasmon resonance property of core-satellite nanostructures: Theoretical prediction and experimental validation.
    Song D; Jing D
    J Colloid Interface Sci; 2017 Nov; 505():373-382. PubMed ID: 28601746
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Localized surface plasmon resonance in arrays of nano-gold cylinders: inverse problem and propagation of uncertainties.
    Barchiesi D; Kessentini S; Guillot N; de la Chapelle ML; Grosges T
    Opt Express; 2013 Jan; 21(2):2245-62. PubMed ID: 23389205
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties.
    Zhang XY; Hu A; Zhang T; Lei W; Xue XJ; Zhou Y; Duley WW
    ACS Nano; 2011 Nov; 5(11):9082-92. PubMed ID: 21955107
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hyperspectral dark-field microscopy of gold nanodisks.
    Grasseschi D; Lima FS; Nakamura M; Toma HE
    Micron; 2015 Feb; 69():15-20. PubMed ID: 25437851
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Curvature of the localized surface plasmon resonance peak.
    Chen P; Liedberg B
    Anal Chem; 2014 Aug; 86(15):7399-405. PubMed ID: 24980977
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multiple surface plasmon modes for gold/silver alloy nanorods.
    Bok HM; Shuford KL; Kim S; Kim SK; Park S
    Langmuir; 2009 May; 25(9):5266-70. PubMed ID: 19334728
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Localized surface plasmon resonances of anisotropic semiconductor nanocrystals.
    Hsu SW; On K; Tao AR
    J Am Chem Soc; 2011 Nov; 133(47):19072-5. PubMed ID: 22044349
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Shape evolution of silver nanoplates through heating and photoinduction.
    Tang B; Xu S; Hou X; Li J; Sun L; Xu W; Wang X
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):646-53. PubMed ID: 23298387
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Observation of absorption-dominated bonding dark plasmon mode from metal-insulator-metal nanodisk arrays fabricated by nanospherical-lens lithography.
    Chang YC; Wang SM; Chung HC; Tseng CB; Chang SH
    ACS Nano; 2012 Apr; 6(4):3390-6. PubMed ID: 22435958
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improved Surface-Enhanced Raman Spectroscopy Sensitivity on Metallic Tungsten Oxide by the Synergistic Effect of Surface Plasmon Resonance Coupling and Charge Transfer.
    Liu W; Bai H; Li X; Li W; Zhai J; Li J; Xi G
    J Phys Chem Lett; 2018 Jul; 9(14):4096-4100. PubMed ID: 29979872
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metallic-like stoichiometric copper sulfide nanocrystals: phase- and shape-selective synthesis, near-infrared surface plasmon resonance properties, and their modeling.
    Xie Y; Carbone L; Nobile C; Grillo V; D'Agostino S; Della Sala F; Giannini C; Altamura D; Oelsner C; Kryschi C; Cozzoli PD
    ACS Nano; 2013 Aug; 7(8):7352-69. PubMed ID: 23859591
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Narrow plasmon mode in 2D arrays of silver nanoparticles self-assembled on thin silver films.
    Malynych S; Chumanov G
    J Microsc; 2008 Mar; 229(Pt 3):567-74. PubMed ID: 18331512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.