These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1566 related articles for article (PubMed ID: 25927346)

  • 1. PRMT5- mediated symmetric arginine dimethylation is attenuated by mutant huntingtin and is impaired in Huntington's disease (HD).
    Ratovitski T; Arbez N; Stewart JC; Chighladze E; Ross CA
    Cell Cycle; 2015; 14(11):1716-29. PubMed ID: 25927346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Huntingtin-mediated axonal transport requires arginine methylation by PRMT6.
    Migazzi A; Scaramuzzino C; Anderson EN; Tripathy D; Hernández IH; Grant RA; Roccuzzo M; Tosatto L; Virlogeux A; Zuccato C; Caricasole A; Ratovitski T; Ross CA; Pandey UB; Lucas JJ; Saudou F; Pennuto M; Basso M
    Cell Rep; 2021 Apr; 35(2):108980. PubMed ID: 33852844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington's disease.
    Hermel E; Gafni J; Propp SS; Leavitt BR; Wellington CL; Young JE; Hackam AS; Logvinova AV; Peel AL; Chen SF; Hook V; Singaraja R; Krajewski S; Goldsmith PC; Ellerby HM; Hayden MR; Bredesen DE; Ellerby LM
    Cell Death Differ; 2004 Apr; 11(4):424-38. PubMed ID: 14713958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A series of N-terminal epitope tagged Hdh knock-in alleles expressing normal and mutant huntingtin: their application to understanding the effect of increasing the length of normal Huntingtin's polyglutamine stretch on CAG140 mouse model pathogenesis.
    Zheng S; Ghitani N; Blackburn JS; Liu JP; Zeitlin SO
    Mol Brain; 2012 Aug; 5():28. PubMed ID: 22892315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of Twist1 in mutant huntingtin-induced transcriptional alterations and neurotoxicity.
    Pan Y; Zhu Y; Yang W; Tycksen E; Liu S; Palucki J; Zhu L; Sasaki Y; Sharma MK; Kim AH; Zhang B; Yano H
    J Biol Chem; 2018 Jul; 293(30):11850-11866. PubMed ID: 29891550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Caspase cleavage of mutant huntingtin precedes neurodegeneration in Huntington's disease.
    Wellington CL; Ellerby LM; Gutekunst CA; Rogers D; Warby S; Graham RK; Loubser O; van Raamsdonk J; Singaraja R; Yang YZ; Gafni J; Bredesen D; Hersch SM; Leavitt BR; Roy S; Nicholson DW; Hayden MR
    J Neurosci; 2002 Sep; 22(18):7862-72. PubMed ID: 12223539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The regulation of autophagosome dynamics by huntingtin and HAP1 is disrupted by expression of mutant huntingtin, leading to defective cargo degradation.
    Wong YC; Holzbaur EL
    J Neurosci; 2014 Jan; 34(4):1293-305. PubMed ID: 24453320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional dysregulation of coding and non-coding genes in cellular models of Huntington's disease.
    Bithell A; Johnson R; Buckley NJ
    Biochem Soc Trans; 2009 Dec; 37(Pt 6):1270-5. PubMed ID: 19909260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced expression of the TrkB receptor in Huntington's disease mouse models and in human brain.
    Ginés S; Bosch M; Marco S; Gavaldà N; Díaz-Hernández M; Lucas JJ; Canals JM; Alberch J
    Eur J Neurosci; 2006 Feb; 23(3):649-58. PubMed ID: 16487146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of huntingtin with PRMTs and its subsequent arginine methylation affects HTT solubility, phase transition behavior and neuronal toxicity.
    Ratovitski T; Jiang M; O'Meally RN; Rauniyar P; Chighladze E; Faragó A; Kamath SV; Jin J; Shevelkin AV; Cole RN; Ross CA
    Hum Mol Genet; 2022 May; 31(10):1651-1672. PubMed ID: 34888656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonallele-specific silencing of mutant and wild-type huntingtin demonstrates therapeutic efficacy in Huntington's disease mice.
    Boudreau RL; McBride JL; Martins I; Shen S; Xing Y; Carter BJ; Davidson BL
    Mol Ther; 2009 Jun; 17(6):1053-63. PubMed ID: 19240687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutant huntingtin promotes the fibrillogenesis of wild-type huntingtin: a potential mechanism for loss of huntingtin function in Huntington's disease.
    Busch A; Engemann S; Lurz R; Okazawa H; Lehrach H; Wanker EE
    J Biol Chem; 2003 Oct; 278(42):41452-61. PubMed ID: 12888569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Caspase 3-cleaved N-terminal fragments of wild-type and mutant huntingtin are present in normal and Huntington's disease brains, associate with membranes, and undergo calpain-dependent proteolysis.
    Kim YJ; Yi Y; Sapp E; Wang Y; Cuiffo B; Kegel KB; Qin ZH; Aronin N; DiFiglia M
    Proc Natl Acad Sci U S A; 2001 Oct; 98(22):12784-9. PubMed ID: 11675509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington's disease: implications for selective neuronal damage.
    Shirendeb U; Reddy AP; Manczak M; Calkins MJ; Mao P; Tagle DA; Reddy PH
    Hum Mol Genet; 2011 Apr; 20(7):1438-55. PubMed ID: 21257639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuroprotective role of Sirt1 in mammalian models of Huntington's disease through activation of multiple Sirt1 targets.
    Jiang M; Wang J; Fu J; Du L; Jeong H; West T; Xiang L; Peng Q; Hou Z; Cai H; Seredenina T; Arbez N; Zhu S; Sommers K; Qian J; Zhang J; Mori S; Yang XW; Tamashiro KL; Aja S; Moran TH; Luthi-Carter R; Martin B; Maudsley S; Mattson MP; Cichewicz RH; Ross CA; Holtzman DM; Krainc D; Duan W
    Nat Med; 2011 Dec; 18(1):153-8. PubMed ID: 22179319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CEP-1347 reduces mutant huntingtin-associated neurotoxicity and restores BDNF levels in R6/2 mice.
    Apostol BL; Simmons DA; Zuccato C; Illes K; Pallos J; Casale M; Conforti P; Ramos C; Roarke M; Kathuria S; Cattaneo E; Marsh JL; Thompson LM
    Mol Cell Neurosci; 2008 Sep; 39(1):8-20. PubMed ID: 18602275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking.
    Orr AL; Li S; Wang CE; Li H; Wang J; Rong J; Xu X; Mastroberardino PG; Greenamyre JT; Li XJ
    J Neurosci; 2008 Mar; 28(11):2783-92. PubMed ID: 18337408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PPAR-δ is repressed in Huntington's disease, is required for normal neuronal function and can be targeted therapeutically.
    Dickey AS; Pineda VV; Tsunemi T; Liu PP; Miranda HC; Gilmore-Hall SK; Lomas N; Sampat KR; Buttgereit A; Torres MJ; Flores AL; Arreola M; Arbez N; Akimov SS; Gaasterland T; Lazarowski ER; Ross CA; Yeo GW; Sopher BL; Magnuson GK; Pinkerton AB; Masliah E; La Spada AR
    Nat Med; 2016 Jan; 22(1):37-45. PubMed ID: 26642438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dysregulation of REST-regulated coding and non-coding RNAs in a cellular model of Huntington's disease.
    Soldati C; Bithell A; Johnston C; Wong KY; Stanton LW; Buckley NJ
    J Neurochem; 2013 Feb; 124(3):418-30. PubMed ID: 23145961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arginine methylation of RNA-binding proteins is impaired in Huntington's disease.
    Ratovitski T; Kamath SV; O'Meally RN; Gosala K; Holland CD; Jiang M; Cole RN; Ross CA
    Hum Mol Genet; 2023 Oct; 32(20):3006-3025. PubMed ID: 37535888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 79.