BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 25927399)

  • 1. Faceted Gold Nanorods: Nanocuboids, Convex Nanocuboids, and Concave Nanocuboids.
    Zhang Q; Zhou Y; Villarreal E; Lin Y; Zou S; Wang H
    Nano Lett; 2015 Jun; 15(6):4161-9. PubMed ID: 25927399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facet Control of Gold Nanorods.
    Zhang Q; Han L; Jing H; Blom DA; Lin Y; Xin HL; Wang H
    ACS Nano; 2016 Feb; 10(2):2960-74. PubMed ID: 26795706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifaceted Gold-Palladium Bimetallic Nanorods and Their Geometric, Compositional, and Catalytic Tunabilities.
    Sun L; Zhang Q; Li GG; Villarreal E; Fu X; Wang H
    ACS Nano; 2017 Mar; 11(3):3213-3228. PubMed ID: 28230971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal overgrowth on gold nanorods: tuning the shape, facet, aspect ratio, and composition of the nanorods.
    Song JH; Kim F; Kim D; Yang P
    Chemistry; 2005 Jan; 11(3):910-6. PubMed ID: 15593133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable plasmonic nanoparticles with catalytically active high-index facets.
    Jing H; Zhang Q; Large N; Yu C; Blom DA; Nordlander P; Wang H
    Nano Lett; 2014 Jun; 14(6):3674-82. PubMed ID: 24842375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterometallic Seed-Mediated Growth of Monodisperse Colloidal Copper Nanorods with Widely Tunable Plasmonic Resonances.
    Jeong S; Liu Y; Zhong Y; Zhan X; Li Y; Wang Y; Cha PM; Chen J; Ye X
    Nano Lett; 2020 Oct; 20(10):7263-7271. PubMed ID: 32866022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly enhanced transverse plasmon resonance and tunable double Fano resonances in gold@titania nanorods.
    Ruan Q; Fang C; Jiang R; Jia H; Lai Y; Wang J; Lin HQ
    Nanoscale; 2016 Mar; 8(12):6514-26. PubMed ID: 26935180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chiral Au-Pd Alloy Nanorods with Tunable Optical Chirality and Catalytically Active Surfaces.
    Liu C; Sun L; Yang G; Cheng Q; Wang C; Tao Y; Sun X; Wang Z; Zhang Q
    Small; 2024 Jun; 20(23):e2310353. PubMed ID: 38150652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of Au@Pt bimetallic nanoparticles with concave Au nanocuboids as seeds and their enhanced electrocatalytic properties in the ethanol oxidation reaction.
    Tan L; Li L; Peng Y; Guo L
    Nanotechnology; 2015 Dec; 26(50):505401. PubMed ID: 26585310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Mechanism for Symmetry Breaking and Shape Control in Single-Crystal Gold Nanorods.
    Walsh MJ; Tong W; Katz-Boon H; Mulvaney P; Etheridge J; Funston AM
    Acc Chem Res; 2017 Dec; 50(12):2925-2935. PubMed ID: 29144733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward hybrid Au nanorods @ M (Au, Ag, Pd and Pt) core-shell heterostructures for ultrasensitive SERS probes.
    Xie X; Gao G; Kang S; Lei Y; Pan Z; Shibayama T; Cai L
    Nanotechnology; 2017 Jun; 28(24):245602. PubMed ID: 28537226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iodide-Switched Deposition for the Synthesis of Segmented Pd-Au-Pd Nanorods: Crystal Facet Matters.
    Liu S; Niu W; Firdoz S; Zhang W
    Langmuir; 2017 Oct; 33(43):12254-12259. PubMed ID: 28985674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Gold Nanoparticles in Compass Shape with Broadly Tunable Plasmon Resonances and High-Performance SERS.
    Huang Y; Dai L; Song L; Zhang L; Rong Y; Zhang J; Nie Z; Chen T
    ACS Appl Mater Interfaces; 2016 Oct; 8(41):27949-27955. PubMed ID: 27700031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled Overgrowth of Five-Fold Concave Nanoparticles into Plasmonic Nanostars and Their Single-Particle Scattering Properties.
    Velázquez-Salazar JJ; Bazán-Díaz L; Zhang Q; Mendoza-Cruz R; Montaño-Priede L; Guisbiers G; Large N; Link S; José-Yacamán M
    ACS Nano; 2019 Sep; 13(9):10113-10128. PubMed ID: 31419107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural Control over Bimetallic Core-Shell Nanorods for Surface-Enhanced Raman Spectroscopy.
    van der Hoeven JES; Deng TS; Albrecht W; Olthof LA; van Huis MA; de Jongh PE; van Blaaderen A
    ACS Omega; 2021 Mar; 6(10):7034-7046. PubMed ID: 33748617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multimode resonances in silver nanocuboids.
    Cortie MB; Liu F; Arnold MD; Niidome Y
    Langmuir; 2012 Jun; 28(24):9103-12. PubMed ID: 22449096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface assembly and plasmonic properties in strongly coupled segmented gold nanorods.
    Gupta MK; König T; Near R; Nepal D; Drummy LF; Biswas S; Naik S; Vaia RA; El-Sayed MA; Tsukruk VV
    Small; 2013 Sep; 9(17):2979-90. PubMed ID: 23495078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmon Modes Induced by Anisotropic Gap Opening in Au@Cu2 O Nanorods.
    Zhang S; Jiang R; Guo Y; Yang B; Chen XL; Wang J; Zhao Y
    Small; 2016 Aug; 12(31):4264-76. PubMed ID: 27374920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold nanorods with finely tunable longitudinal surface plasmon resonance as SERS substrates.
    Smitha SL; Gopchandran KG; Ravindran TR; Prasad VS
    Nanotechnology; 2011 Jul; 22(26):265705. PubMed ID: 21576800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.