BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

694 related articles for article (PubMed ID: 2592775)

  • 1. Thymic involution and thymocyte phenotypic alterations induced by murine mammary adenocarcinomas.
    Fu Y; Paul RD; Wang Y; Lopez DM
    J Immunol; 1989 Dec; 143(12):4300-7. PubMed ID: 2592775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of thymic stromal cell dysfunction in the thymic involution of mammary tumor-bearing mice.
    Sun QL; Charyulu V; Lobo D; Lopez DM
    Anticancer Res; 2002; 22(1A):91-6. PubMed ID: 12017339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impaired thymopoiesis occurring during the thymic involution of tumor-bearing mice is associated with a down-regulation of the antiapoptotic proteins Bcl-XL and A1.
    Carrio R; Lopez DM
    Int J Mol Med; 2009 Jan; 23(1):89-98. PubMed ID: 19082511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thymic atrophy induced by murine mammary adenocarcinoma in vivo.
    Fu YX; Altman N; Lopez DM
    In Vivo; 1989; 3(1):1-5. PubMed ID: 2519827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of tumor-derived cytokines on the immune system of mice bearing a mammary adenocarcinoma. I. Induction of regulatory macrophages in normal mice by the in vivo administration of rGM-CSF.
    Fu YX; Watson GA; Kasahara M; Lopez DM
    J Immunol; 1991 Jan; 146(2):783-9. PubMed ID: 1824777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. T-cell recruitment from the thymus to the spleen in tumor bearing mice: phenotypical alteration and recruitment of thymocytes raised in a tumor bearing state.
    Tanaka K; Koga Y; Taniguchi K; Nomoto K
    Cancer Res; 1987 Apr; 47(8):2136-41. PubMed ID: 3493841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NK cells from mammary tumor bearing mice do not exert natural killer activity but function as antibody dependent cellular cytotoxicity effectors.
    Rivera LM; Lopez DM
    Anticancer Res; 1993; 13(1):177-84. PubMed ID: 8476211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumor-induced thymic atrophy: alteration in interferons and Jak/Stats signaling pathways.
    Carrio R; Torroella-Kouri M; Iragavarapu-Charyulu V; Lopez DM
    Int J Oncol; 2011 Feb; 38(2):547-53. PubMed ID: 21165556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular events during radiation-induced thymic leukemogenesis in mice: abnormal T cell differentiation in the thymus and defect of thymocyte precursors in the bone marrow after split-dose irradiation.
    Muto M; Kubo E; Sado T
    J Immunol; 1985 Mar; 134(3):2026-31. PubMed ID: 3871460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A role for the thymic epithelium in the selection of pre-T cells from murine bone marrow.
    Bauvois B; Ezine S; Imhof B; Denoyelle M; Thiery JP
    J Immunol; 1989 Aug; 143(4):1077-86. PubMed ID: 2787355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunopotentiation in mice bearing a spontaneous transplantable T-cell lymphoma: role of thymic extract.
    Shanker A; Singh SM
    Neoplasma; 2003; 50(4):272-9. PubMed ID: 12937840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Melphalan-induced enhancement of antitumor immune reactivity in thymocytes of adult BALB/c mice bearing a large MOPC-315 tumor.
    Bartik MM; Takesue BY; Mokyr MB
    Cancer Res; 1987 Sep; 47(18):4848-55. PubMed ID: 3497711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenotypic characterization of thymic prelymphoma cells of B10 mice treated with split-dose irradiation.
    Muto M; Kubo E; Kamisaku H; Sado T
    J Immunol; 1990 Feb; 144(3):849-53. PubMed ID: 2104913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of zinc in pre- and postnatal mammalian thymic immunohistogenesis.
    Bodey B; Bodey B; Siegel SE; Kaiser HE
    In Vivo; 1998; 12(6):695-722. PubMed ID: 9891234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of mammary tumor progression on phenotype and function of spleen and in situ lymphocytes in mice.
    Buessow SC; Paul RD; Lopez DM
    J Natl Cancer Inst; 1984 Jul; 73(1):249-55. PubMed ID: 6610791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CD4+, but not CD8+, T cells from mammary tumor-bearing mice have a down-regulated production of IFN-gamma: role of phosphatidyl serine.
    Cheng X; Lopez DM
    J Immunol; 1998 Mar; 160(6):2735-41. PubMed ID: 9510174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow cytometric analysis of CD3/TCR complex, zinc, and glucocorticoid-mediated regulation of apoptosis and cell cycle distribution in thymocytes from old mice.
    Provinciali M; Di Stefano G; Stronati S
    Cytometry; 1998 May; 32(1):1-8. PubMed ID: 9581618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. T cell development in insulin-like growth factor-II transgenic mice.
    Kooijman R; van Buul-Offers SC; Scholtens LE; Schuurman HJ; Van den Brande LJ; Zegers BJ
    J Immunol; 1995 Jun; 154(11):5736-45. PubMed ID: 7751625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early intrathymic precursor cells acquire a CD4(low) phenotype.
    Michie AM; Carlyle JR; Zúñiga-Pflücker JC
    J Immunol; 1998 Feb; 160(4):1735-41. PubMed ID: 9469431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tumor necrosis factor promotes human T-cell development in nonobese diabetic/severe combined immunodeficient mice.
    Samira S; Ferrand C; Peled A; Nagler A; Tovbin Y; Ben-Hur H; Taylor N; Globerson A; Lapidot T
    Stem Cells; 2004; 22(6):1085-100. PubMed ID: 15536198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.