These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 2592787)

  • 1. The effect of insertion depth on the theoretical SAR patterns of 915 MHz dipole antenna arrays for hyperthermia.
    James BJ; Strohbehn JW; Mechling JA; Trembly BS
    Int J Hyperthermia; 1989; 5(6):733-47. PubMed ID: 2592787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absorbed power deposition for various insertion depths for 915 MHz interstitial dipole antenna arrays: experiment versus theory.
    Ryan TP; Mechling JA; Strohbehn JW
    Int J Radiat Oncol Biol Phys; 1990 Aug; 19(2):377-87. PubMed ID: 2394617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional theoretical SAR and temperature distributions created in brain tissue by 915 and 2450 MHz dipole antenna arrays with varying insertion depths.
    Mechling JA; Strohbehn JW
    Int J Hyperthermia; 1992; 8(4):529-42. PubMed ID: 1402132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical limits of SAR distributions of a four-element square array of dipole-type antennas.
    Fan CJ; Leybovich LB; Devanna WG; Kurup RG
    Med Phys; 1994 Nov; 21(11):1665-70. PubMed ID: 7891625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional theoretical temperature distributions produced by 915 MHz dipole antenna arrays with varying insertion depths in muscle tissue.
    Mechling JA; Strohbehn JW; Ryan TP
    Int J Radiat Oncol Biol Phys; 1992; 22(1):131-8. PubMed ID: 1727110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of heating patterns of a microwave interstitial antenna array at various insertion depths.
    Zhang Y; Joines WT; Oleson JR
    Int J Hyperthermia; 1991; 7(1):197-207. PubMed ID: 2051073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SAR distributions in interstitial microwave antenna arrays with a single dipole displacement.
    Clibbon KL; McCowen A; Hand JW
    IEEE Trans Biomed Eng; 1993 Sep; 40(9):925-32. PubMed ID: 8288284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of six microwave antennas for hyperthermia treatment of cancer: sar results for single antennas and arrays.
    Ryan TP
    Int J Radiat Oncol Biol Phys; 1991 Jul; 21(2):403-13. PubMed ID: 2061117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implantable helical coil microwave antenna for interstitial hyperthermia.
    Satoh T; Stauffer PR
    Int J Hyperthermia; 1988; 4(5):497-512. PubMed ID: 3392424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of improved microwave interstitial antennas for local hyperthermia.
    Sathiaseelan V; Leybovich L; Emami B; Stauffer P; Straube W
    Int J Radiat Oncol Biol Phys; 1991 Mar; 20(3):531-9. PubMed ID: 1995539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and characterisation of miniaturised cavity-backed patch antenna for microwave hyperthermia.
    Chakaravarthi G; Arunachalam K
    Int J Hyperthermia; 2015; 31(7):737-48. PubMed ID: 26365603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A theoretical evaluation of the performance of the Dartmouth IMAAH system to heat cylindrical and ellipsoidal tumour models.
    Mechling JA; Strohbehn JW; France LJ
    Int J Hyperthermia; 1991; 7(3):465-83. PubMed ID: 1919142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The distribution of power and heat produced by interstitial microwave antenna arrays: I. Comparative phantom and canine studies.
    Denman DL; Elson HR; Lewis GC; Breneman JC; Clausen CL; Dine J; Aron BS
    Int J Radiat Oncol Biol Phys; 1988 Jan; 14(1):127-37. PubMed ID: 3335448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The distribution of power and heat produced by interstitial microwave antenna arrays: II. The role of antenna spacing and insertion depth.
    Denman DL; Foster AE; Lewis GC; Redmond KP; Elson HR; Breneman JC; Kereiakes JG; Aron BS
    Int J Radiat Oncol Biol Phys; 1988 Mar; 14(3):537-45. PubMed ID: 3343161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A theoretical model for input impedance of interstitial microwave antennas with choke.
    Wong TZ; Trembly BS
    Int J Radiat Oncol Biol Phys; 1994 Feb; 28(3):673-82. PubMed ID: 8113111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of microwave interstitial antennas in the phantom with varying cross-section.
    Leybovich LB; Kurup RG
    Int J Radiat Oncol Biol Phys; 1993 Jan; 25(1):105-12. PubMed ID: 8416865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The characterization of semirigid coaxial antennae for interstitial and endocavitary microwave hyperthermia].
    Erb J; Klautke G; Seegenschmiedt HM; Engelbrecht R; Schaller G; Sauer R
    Strahlenther Onkol; 1994 Nov; 170(11):654-64. PubMed ID: 7974181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dielectric-loaded coaxial-slot antenna for interstitial microwave hyperthermia: longitudinal control of heating patterns.
    Hamada L; Saito K; Yoshimura H; Ito K
    Int J Hyperthermia; 2000; 16(3):219-29. PubMed ID: 10830585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interstitial helical coil microwave antenna for experimental brain hyperthermia.
    Satoh T; Seilhan TM; Stauffer PR; Sneed PK; Fike JR
    Neurosurgery; 1988 Nov; 23(5):564-9. PubMed ID: 3059216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Research on the hyperthermia-therapy performances of invasive microwave antennas].
    Yang GS; Liu YH; Wang JQ
    Zhongguo Yi Liao Qi Xie Za Zhi; 2002 Mar; 26(3):170-1, 217. PubMed ID: 16104297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.