These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 25928382)

  • 1. Characterization of proanthocyanidin metabolism in pea (Pisum sativum) seeds.
    Ferraro K; Jin AL; Nguyen TD; Reinecke DM; Ozga JA; Ro DK
    BMC Plant Biol; 2014 Sep; 14():238. PubMed ID: 25928382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves.
    Bogs J; Downey MO; Harvey JS; Ashton AR; Tanner GJ; Robinson SP
    Plant Physiol; 2005 Oct; 139(2):652-63. PubMed ID: 16169968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proanthocyanidin synthesis in Theobroma cacao: genes encoding anthocyanidin synthase, anthocyanidin reductase, and leucoanthocyanidin reductase.
    Liu Y; Shi Z; Maximova S; Payne MJ; Guiltinan MJ
    BMC Plant Biol; 2013 Dec; 13():202. PubMed ID: 24308601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early steps in proanthocyanidin biosynthesis in the model legume Medicago truncatula.
    Pang Y; Peel GJ; Wright E; Wang Z; Dixon RA
    Plant Physiol; 2007 Nov; 145(3):601-15. PubMed ID: 17885080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proanthocyanidin accumulation and transcriptional responses in the seed coat of cranberry beans (Phaseolus vulgaris L.) with different susceptibility to postharvest darkening.
    Freixas Coutin JA; Munholland S; Silva A; Subedi S; Lukens L; Crosby WL; Pauls KP; Bozzo GG
    BMC Plant Biol; 2017 May; 17(1):89. PubMed ID: 28545577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development.
    Bogs J; Jaffé FW; Takos AM; Walker AR; Robinson SP
    Plant Physiol; 2007 Mar; 143(3):1347-61. PubMed ID: 17208963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tc-MYBPA an Arabidopsis TT2-like transcription factor and functions in the regulation of proanthocyanidin synthesis in Theobroma cacao.
    Liu Y; Shi Z; Maximova SN; Payne MJ; Guiltinan MJ
    BMC Plant Biol; 2015 Jun; 15():160. PubMed ID: 26109181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome and biochemical analyses revealed a detailed proanthocyanidin biosynthesis pathway in brown cotton fiber.
    Xiao YH; Yan Q; Ding H; Luo M; Hou L; Zhang M; Yao D; Liu HS; Li X; Zhao J; Pei Y
    PLoS One; 2014; 9(1):e86344. PubMed ID: 24466041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of leucoanthocyanidin reductase and anthocyanidin reductase genes involved in proanthocyanidin biosynthesis in Malus crabapple plants.
    Li H; Tian J; Yao YY; Zhang J; Song TT; Li KT; Yao YC
    Plant Physiol Biochem; 2019 Jun; 139():141-151. PubMed ID: 30889479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a tissue-specific and developmentally regulated beta-1,3-glucanase gene in pea (Pisum sativum).
    Buchner P; Rochat C; Wuillème S; Boutin JP
    Plant Mol Biol; 2002 May; 49(2):171-86. PubMed ID: 11999373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular cloning and functional characterization of the anthocyanidin reductase gene from Vitis bellula.
    Zhu Y; Peng QZ; Li KG; Xie DY
    Planta; 2014 Aug; 240(2):381-98. PubMed ID: 24880552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional characterization of an anthocyanidin reductase gene from the fibers of upland cotton (Gossypium hirsutum).
    Zhu Y; Wang H; Peng Q; Tang Y; Xia G; Wu J; Xie DY
    Planta; 2015 May; 241(5):1075-89. PubMed ID: 25575669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Medicago glucosyltransferase UGT72L1: potential roles in proanthocyanidin biosynthesis.
    Pang Y; Cheng X; Huhman DV; Ma J; Peel GJ; Yonekura-Sakakibara K; Saito K; Shen G; Sumner LW; Tang Y; Wen J; Yun J; Dixon RA
    Planta; 2013 Jul; 238(1):139-54. PubMed ID: 23592226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary and functional characterization of leucoanthocyanidin reductases from Camellia sinensis.
    Wang P; Zhang L; Jiang X; Dai X; Xu L; Li T; Xing D; Li Y; Li M; Gao L; Xia T
    Planta; 2018 Jan; 247(1):139-154. PubMed ID: 28887677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An integrated approach to demonstrating the ANR pathway of proanthocyanidin biosynthesis in plants.
    Peng QZ; Zhu Y; Liu Z; Du C; Li KG; Xie DY
    Planta; 2012 Sep; 236(3):901-18. PubMed ID: 22678031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in the Proanthocyanidin Composition and Related Gene Expression in Bilberry (
    Suvanto J; Karppinen K; Riihinen K; Jaakola L; Salminen JP
    J Agric Food Chem; 2020 Jul; 68(28):7378-7386. PubMed ID: 32543188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flavan-3-ols in Norway spruce: biosynthesis, accumulation, and function in response to attack by the bark beetle-associated fungus Ceratocystis polonica.
    Hammerbacher A; Paetz C; Wright LP; Fischer TC; Bohlmann J; Davis AJ; Fenning TM; Gershenzon J; Schmidt A
    Plant Physiol; 2014 Apr; 164(4):2107-22. PubMed ID: 24550241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ectopic expression of a basic helix-loop-helix gene transactivates parallel pathways of proanthocyanidin biosynthesis. structure, expression analysis, and genetic control of leucoanthocyanidin 4-reductase and anthocyanidin reductase genes in Lotus corniculatus.
    Paolocci F; Robbins MP; Madeo L; Arcioni S; Martens S; Damiani F
    Plant Physiol; 2007 Jan; 143(1):504-16. PubMed ID: 17098849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering of proanthocyanidins through co-expression of anthocyanidin reductase and the PAP1 MYB transcription factor.
    Xie DY; Sharma SB; Wright E; Wang ZY; Dixon RA
    Plant J; 2006 Mar; 45(6):895-907. PubMed ID: 16507081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Members of the aquaporin family in the developing pea seed coat include representatives of the PIP, TIP, and NIP subfamilies.
    Schuurmans JA; van Dongen JT; Rutjens BP; Boonman A; Pieterse CM; Borstlap AC
    Plant Mol Biol; 2003 Nov; 53(5):633-45. PubMed ID: 15010602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.