BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 25928666)

  • 1. Size dependent translocation and fetal accumulation of gold nanoparticles from maternal blood in the rat.
    Semmler-Behnke M; Lipka J; Wenk A; Hirn S; Schäffler M; Tian F; Schmid G; Oberdörster G; Kreyling WG
    Part Fibre Toxicol; 2014 Sep; 11():33. PubMed ID: 25928666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Age-Dependent Rat Lung Deposition Patterns of Inhaled 20 Nanometer Gold Nanoparticles and their Quantitative Biokinetics in Adult Rats.
    Kreyling WG; Möller W; Holzwarth U; Hirn S; Wenk A; Schleh C; Schäffler M; Haberl N; Gibson N; Schittny JC
    ACS Nano; 2018 Aug; 12(8):7771-7790. PubMed ID: 30085651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold nanoparticle distribution in advanced in vitro and ex vivo human placental barrier models.
    Aengenheister L; Dietrich D; Sadeghpour A; Manser P; Diener L; Wichser A; Karst U; Wick P; Buerki-Thurnherr T
    J Nanobiotechnology; 2018 Oct; 16(1):79. PubMed ID: 30309365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Penetration of pegylated gold nanoparticles through rat placental barrier.
    Tsyganova NA; Khairullin RM; Terentyuk GS; Khlebtsov BN; Bogatyrev VA; Dykman LA; Erykov SN; Khlebtsov NG
    Bull Exp Biol Med; 2014 Jul; 157(3):383-5. PubMed ID: 25065320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Demonstration of the clathrin- and caveolin-mediated endocytosis at the maternal-fetal barrier in mouse placenta after intravenous administration of gold nanoparticles.
    Rattanapinyopituk K; Shimada A; Morita T; Sakurai M; Asano A; Hasegawa T; Inoue K; Takano H
    J Vet Med Sci; 2014 Mar; 76(3):377-87. PubMed ID: 24257253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative biokinetics over a 28 day period of freshly generated, pristine, 20 nm titanium dioxide nanoparticle aerosols in healthy adult rats after a single two-hour inhalation exposure.
    Kreyling WG; Holzwarth U; Schleh C; Hirn S; Wenk A; Schäffler M; Haberl N; Semmler-Behnke M; Gibson N
    Part Fibre Toxicol; 2019 Jul; 16(1):29. PubMed ID: 31288843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative biokinetics over a 28 day period of freshly generated, pristine, 20 nm silver nanoparticle aerosols in healthy adult rats after a single 1½-hour inhalation exposure.
    Kreyling WG; Holzwarth U; Hirn S; Schleh C; Wenk A; Schäffler M; Haberl N; Gibson N
    Part Fibre Toxicol; 2020 Jun; 17(1):21. PubMed ID: 32503677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue distribution of gold and silver after subacute intravenous injection of co-administered gold and silver nanoparticles of similar sizes.
    Lee JH; Sung JH; Ryu HR; Song KS; Song NW; Park HM; Shin BS; Ahn K; Gulumian M; Faustman EM; Yu IJ
    Arch Toxicol; 2018 Apr; 92(4):1393-1405. PubMed ID: 29450565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Air-blood barrier translocation of tracheally instilled gold nanoparticles inversely depends on particle size.
    Kreyling WG; Hirn S; Möller W; Schleh C; Wenk A; Celik G; Lipka J; Schäffler M; Haberl N; Johnston BD; Sperling R; Schmid G; Simon U; Parak WJ; Semmler-Behnke M
    ACS Nano; 2014 Jan; 8(1):222-33. PubMed ID: 24364563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of DMPS and DMSA on the placental and fetal disposition of methylmercury.
    Bridges CC; Joshee L; Zalups RK
    Placenta; 2009 Sep; 30(9):800-5. PubMed ID: 19615742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration.
    Hirn S; Semmler-Behnke M; Schleh C; Wenk A; Lipka J; Schäffler M; Takenaka S; Möller W; Schmid G; Simon U; Kreyling WG
    Eur J Pharm Biopharm; 2011 Apr; 77(3):407-16. PubMed ID: 21195759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of 8-hydroxydeoxyguanosine and ultrastructure alterations by silver nanoparticles attributing to placental transfer in pregnant rats and fetuses.
    Salim EI; Abdel-Halim KY; Abu-Risha SE; Abdel-Latif AS
    Hum Exp Toxicol; 2019 Jun; 38(6):734-745. PubMed ID: 30935239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxicokinetics of bisphenol A in pregnant DA/Han rats after single i.v. application.
    Moors S; Diel P; Degen GH
    Arch Toxicol; 2006 Oct; 80(10):647-55. PubMed ID: 16604338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maternal-fetal transfer of endocrine disruptors in the induction of Calbindin-D9k mRNA and protein during pregnancy in rat model.
    Hong EJ; Choi KC; Jeung EB
    Mol Cell Endocrinol; 2003 Dec; 212(1-2):63-72. PubMed ID: 14654251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of dietary gold nanoparticles in zebrafish at very low contamination pressure: the role of size, concentration and exposure time.
    Geffroy B; Ladhar C; Cambier S; Treguer-Delapierre M; Brèthes D; Bourdineaud JP
    Nanotoxicology; 2012 Mar; 6(2):144-60. PubMed ID: 21417799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced fetal, placental, and amniotic fluid PTHrP in the growth-restricted spontaneously hypertensive rat.
    Wlodek ME; Westcott KT; Ho PW; Serruto A; Di Nicolantonio R; Farrugia W; Moseley JM
    Am J Physiol Regul Integr Comp Physiol; 2000 Jul; 279(1):R31-8. PubMed ID: 10896861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gestational age and dose influence on placental transfer of 63Ni in rats.
    Wang XW; Gu JY; Li Z; Song YF; Wu WS; Hou YP
    Placenta; 2010 Apr; 31(4):305-11. PubMed ID: 20167364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disposition of intravenously or orally administered silver nanoparticles in pregnant rats and the effect on the biochemical profile in urine.
    Fennell TR; Mortensen NP; Black SR; Snyder RW; Levine KE; Poitras E; Harrington JM; Wingard CJ; Holland NA; Pathmasiri W; Sumner SC
    J Appl Toxicol; 2017 May; 37(5):530-544. PubMed ID: 27696470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The spontaneously hypertensive rat fetus, not the mother, is responsible for the reduced amniotic fluid PTHrP concentrations and growth restriction.
    Wlodek ME; Koutsis K; Westcott KT; Ho PW; Di Nicolantonio R; Moseley JM
    Placenta; 2001 Aug; 22(7):646-51. PubMed ID: 11504533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fetal versus maternal determinants of the reduced fetal and placental growth in spontaneously hypertensive rats.
    Di Nicolantonio R; Koutsis K; Wlodek ME
    J Hypertens; 2000 Jan; 18(1):45-50. PubMed ID: 10678542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.