These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
481 related articles for article (PubMed ID: 25928732)
1. Photo-cross-linkable methacrylated gelatin and hydroxyapatite hybrid hydrogel for modularly engineering biomimetic osteon. Zuo Y; Liu X; Wei D; Sun J; Xiao W; Zhao H; Guo L; Wei Q; Fan H; Zhang X ACS Appl Mater Interfaces; 2015 May; 7(19):10386-94. PubMed ID: 25928732 [TBL] [Abstract][Full Text] [Related]
2. Microfluidic-based generation of functional microfibers for biomimetic complex tissue construction. Zuo Y; He X; Yang Y; Wei D; Sun J; Zhong M; Xie R; Fan H; Zhang X Acta Biomater; 2016 Jul; 38():153-62. PubMed ID: 27130274 [TBL] [Abstract][Full Text] [Related]
3. Novel scaffolds based on poly(2-hydroxyethyl methacrylate) superporous hydrogels for bone tissue engineering. Çetin D; Kahraman AS; Gümüşderelioğlu M J Biomater Sci Polym Ed; 2011; 22(9):1157-78. PubMed ID: 20615330 [TBL] [Abstract][Full Text] [Related]
4. Fabrication and characterization of silk microfiber-reinforced methacrylated gelatin hydrogel with turnable properties. Xiao W; Tan Y; Li J; Gu C; Li H; Li B; Liao X J Biomater Sci Polym Ed; 2018 Dec; 29(17):2068-2082. PubMed ID: 29943690 [TBL] [Abstract][Full Text] [Related]
5. Methacrylated gelatin and mature adipocytes are promising components for adipose tissue engineering. Huber B; Borchers K; Tovar GE; Kluger PJ J Biomater Appl; 2016 Jan; 30(6):699-710. PubMed ID: 26017717 [TBL] [Abstract][Full Text] [Related]
6. Three-Dimensional-Printable Thermo/Photo-Cross-Linked Methacrylated Chitosan-Gelatin Hydrogel Composites for Tissue Engineering. Osi AR; Zhang H; Chen J; Zhou Y; Wang R; Fu J; Müller-Buschbaum P; Zhong Q ACS Appl Mater Interfaces; 2021 May; 13(19):22902-22913. PubMed ID: 33960765 [TBL] [Abstract][Full Text] [Related]
7. Biomimetic composite scaffold of hydroxyapatite/gelatin-chitosan core-shell nanofibers for bone tissue engineering. Chen P; Liu L; Pan J; Mei J; Li C; Zheng Y Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():325-335. PubMed ID: 30678918 [TBL] [Abstract][Full Text] [Related]
8. Bottom-up approach to build osteon-like structure by cell-laden photocrosslinkable hydrogel. Zuo Y; Xiao W; Chen X; Tang Y; Luo H; Fan H Chem Commun (Camb); 2012 Mar; 48(26):3170-2. PubMed ID: 22331209 [TBL] [Abstract][Full Text] [Related]
9. Sequentially-crosslinked bioactive hydrogels as nano-patterned substrates with customizable stiffness and degradation for corneal tissue engineering applications. Rizwan M; Peh GSL; Ang HP; Lwin NC; Adnan K; Mehta JS; Tan WS; Yim EKF Biomaterials; 2017 Mar; 120():139-154. PubMed ID: 28061402 [TBL] [Abstract][Full Text] [Related]
10. Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications. Kai D; Prabhakaran MP; Stahl B; Eblenkamp M; Wintermantel E; Ramakrishna S Nanotechnology; 2012 Mar; 23(9):095705. PubMed ID: 22322583 [TBL] [Abstract][Full Text] [Related]
12. Hydroxyapatite whisker reinforced 63s glass scaffolds for bone tissue engineering. Shuai C; Cao Y; Gao C; Feng P; Xiao T; Peng S Biomed Res Int; 2015; 2015():379294. PubMed ID: 25821798 [TBL] [Abstract][Full Text] [Related]
13. Glucosamine-grafted methacrylated gelatin hydrogels as potential biomaterials for cartilage repair. Suo H; Li L; Zhang C; Yin J; Xu K; Liu J; Fu J J Biomed Mater Res B Appl Biomater; 2020 Apr; 108(3):990-999. PubMed ID: 31369700 [TBL] [Abstract][Full Text] [Related]
14. Comparative study of gelatin cryogels reinforced with hydroxyapatites with different morphologies and interfacial bonding. Gu L; Zhang Y; Zhang L; Huang Y; Zuo D; Cai Q; Yang X Biomed Mater; 2020 Mar; 15(3):035012. PubMed ID: 32031987 [TBL] [Abstract][Full Text] [Related]
15. Gelatin methacrylate scaffold for bone tissue engineering: The influence of polymer concentration. Celikkin N; Mastrogiacomo S; Jaroszewicz J; Walboomers XF; Swieszkowski W J Biomed Mater Res A; 2018 Jan; 106(1):201-209. PubMed ID: 28884519 [TBL] [Abstract][Full Text] [Related]
16. Biomimetic Mineralized Hydroxyapatite Nanofiber-Incorporated Methacrylated Gelatin Hydrogel with Improved Mechanical and Osteoinductive Performances for Bone Regeneration. Wang H; Hu B; Li H; Feng G; Pan S; Chen Z; Li B; Song J Int J Nanomedicine; 2022; 17():1511-1529. PubMed ID: 35388269 [TBL] [Abstract][Full Text] [Related]
17. Efficient regeneration of rat calvarial defect with gelatin-hydroxyapatite composite cryogel. Zhang Y; Leng H; Du Z; Huang Y; Liu X; Zhao Z; Zhang X; Cai Q; Yang X Biomed Mater; 2020 Sep; 15(6):065005. PubMed ID: 32422614 [TBL] [Abstract][Full Text] [Related]
18. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering. Kong L; Ao Q; Wang A; Gong K; Wang X; Lu G; Gong Y; Zhao N; Zhang X J Biomater Appl; 2007 Nov; 22(3):223-39. PubMed ID: 17255157 [TBL] [Abstract][Full Text] [Related]
19. Gelatin Methacryloyl-Riboflavin (GelMA-RF) Hydrogels for Bone Regeneration. Goto R; Nishida E; Kobayashi S; Aino M; Ohno T; Iwamura Y; Kikuchi T; Hayashi JI; Yamamoto G; Asakura M; Mitani A Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33561941 [TBL] [Abstract][Full Text] [Related]
20. Sphere-shaped nano-hydroxyapatite/chitosan/gelatin 3D porous scaffolds increase proliferation and osteogenic differentiation of human induced pluripotent stem cells from gingival fibroblasts. Ji J; Tong X; Huang X; Wang T; Lin Z; Cao Y; Zhang J; Dong L; Qin H; Hu Q Biomed Mater; 2015 Jul; 10(4):045005. PubMed ID: 26154827 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]