These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 25928836)

  • 1. Step-flow kinetics model for the vapor-solid-solid Si nanowires growth.
    Cui H; Lü YY; Yang GW; Chen YM; Wang CX
    Nano Lett; 2015 May; 15(5):3640-5. PubMed ID: 25928836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vapor-solid-solid growth dynamics in GaAs nanowires.
    Maliakkal CB; Tornberg M; Jacobsson D; Lehmann S; Dick KA
    Nanoscale Adv; 2021 Oct; 3(20):5928-5940. PubMed ID: 36132677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure, growth kinetics, and ledge flow during vapor-solid-solid growth of copper-catalyzed silicon nanowires.
    Wen CY; Reuter MC; Tersoff J; Stach EA; Ross FM
    Nano Lett; 2010 Feb; 10(2):514-9. PubMed ID: 20041666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Producing Atomically Abrupt Axial Heterojunctions in Silicon-Germanium Nanowires by Thermal Oxidation.
    Lee HY; Shen TH; Hu CY; Tsai YY; Wen CY
    Nano Lett; 2017 Dec; 17(12):7494-7499. PubMed ID: 29185770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time observation of the solid-liquid-vapor dissolution of individual tin(IV) oxide nanowires.
    Hudak BM; Chang YJ; Yu L; Li G; Edwards DN; Guiton BS
    ACS Nano; 2014 Jun; 8(6):5441-8. PubMed ID: 24818706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying crystallization- and incorporation-limited regimes during vapor-liquid-solid growth of Si nanowires.
    Pinion CW; Nenon DP; Christesen JD; Cahoon JF
    ACS Nano; 2014 Jun; 8(6):6081-8. PubMed ID: 24815744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solid-Liquid-Vapor Etching of Semiconductor Nanowires.
    Hui HY; Filler MA
    Nano Lett; 2015 Oct; 15(10):6939-45. PubMed ID: 26383971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Encoding abrupt and uniform dopant profiles in vapor-liquid-solid nanowires by suppressing the reservoir effect of the liquid catalyst.
    Christesen JD; Pinion CW; Zhang X; McBride JR; Cahoon JF
    ACS Nano; 2014 Nov; 8(11):11790-8. PubMed ID: 25363730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diameter-dependent or independent: toward a mechanistic understanding of the vapor-liquid-solid Si nanowire growth rate.
    Lü YY; Cui H; Yang GW; Wang CX
    Nano Lett; 2012 Aug; 12(8):4032-6. PubMed ID: 22823587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Si Doping of Vapor-Liquid-Solid GaAs Nanowires: n-Type or p-Type?
    Hijazi H; Monier G; Gil E; Trassoudaine A; Bougerol C; Leroux C; Castellucci D; Robert-Goumet C; Hoggan PE; André Y; Isik Goktas N; LaPierre RR; Dubrovskii VG
    Nano Lett; 2019 Jul; 19(7):4498-4504. PubMed ID: 31203632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of an intrinsic source of doping inhomogeneity in vapor-liquid-solid-grown nanowires.
    Connell JG; Yoon K; Perea DE; Schwalbach EJ; Voorhees PW; Lauhon LJ
    Nano Lett; 2013 Jan; 13(1):199-206. PubMed ID: 23237496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coexistence of vapor-liquid-solid and vapor-solid-solid growth modes in Pd-assisted InAs nanowires.
    Heun S; Radha B; Ercolani D; Kulkarni GU; Rossi F; Grillo V; Salviati G; Beltram F; Sorba L
    Small; 2010 Sep; 6(17):1935-41. PubMed ID: 20662001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-situ observations of nanoscale effects in germanium nanowire growth with ternary eutectic alloys.
    Biswas S; O'Regan C; Morris MA; Holmes JD
    Small; 2015 Jan; 11(1):103-11. PubMed ID: 25196560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic-Scale Observation of Vapor-Solid Nanowire Growth via Oscillatory Mass Transport.
    Zhang Z; Wang Y; Li H; Yuan W; Zhang X; Sun C; Zhang Z
    ACS Nano; 2016 Jan; 10(1):763-9. PubMed ID: 26645527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of the surface migration of gold on the growth of silicon nanowires.
    Hannon JB; Kodambaka S; Ross FM; Tromp RM
    Nature; 2006 Mar; 440(7080):69-71. PubMed ID: 16452928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oscillatory mass transport in vapor-liquid-solid growth of sapphire nanowires.
    Oh SH; Chisholm MF; Kauffmann Y; Kaplan WD; Luo W; Rühle M; Scheu C
    Science; 2010 Oct; 330(6003):489-93. PubMed ID: 20966248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling the growth of Si/Ge nanowires and heterojunctions using silver-gold alloy catalysts.
    Chou YC; Wen CY; Reuter MC; Su D; Stach EA; Ross FM
    ACS Nano; 2012 Jul; 6(7):6407-15. PubMed ID: 22708581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling heterojunction abruptness in VLS-grown semiconductor nanowires via in situ catalyst alloying.
    Perea DE; Li N; Dickerson RM; Misra A; Picraux ST
    Nano Lett; 2011 Aug; 11(8):3117-22. PubMed ID: 21696182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ledge-flow-controlled catalyst interface dynamics during Si nanowire growth.
    Hofmann S; Sharma R; Wirth CT; Cervantes-Sodi F; Ducati C; Kasama T; Dunin-Borkowski RE; Drucker J; Bennett P; Robertson J
    Nat Mater; 2008 May; 7(5):372-5. PubMed ID: 18327262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical analysis of the vapor-liquid-solid mechanism of nanowire growth during molecular beam epitaxy.
    Dubrovskii VG; Sibirev NV; Cirlin GE; Harmand JC; Ustinov VM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 1):021603. PubMed ID: 16605346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.