BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 25928878)

  • 1. Engineering Saccharomyces pastorianus for the co-utilisation of xylose and cellulose from biomass.
    Kricka W; James TC; Fitzpatrick J; Bond U
    Microb Cell Fact; 2015 Apr; 14():61. PubMed ID: 25928878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consolidated bioprocessing of corn cob-derived hemicellulose: engineered industrial
    Cunha JT; Romaní A; Inokuma K; Johansson B; Hasunuma T; Kondo A; Domingues L
    Biotechnol Biofuels; 2020; 13():138. PubMed ID: 32782474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sustainable biorefinery approach by utilizing xylose fraction of lignocellulosic biomass.
    Das S; Chandukishore T; Ulaganathan N; Dhodduraj K; Gorantla SS; Chandna T; Gupta LK; Sahoo A; Atheena PV; Raval R; Anjana PA; DasuVeeranki V; Prabhu AA
    Int J Biol Macromol; 2024 May; 266(Pt 2):131290. PubMed ID: 38569993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring D-xylose oxidation in Saccharomyces cerevisiae through the Weimberg pathway.
    Wasserstrom L; Portugal-Nunes D; Almqvist H; Sandström AG; Lidén G; Gorwa-Grauslund MF
    AMB Express; 2018 Mar; 8(1):33. PubMed ID: 29508097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated Renewable Production of Sorbitol and Xylitol from Switchgrass.
    Galán G; Martín M; Grossmann IE
    Ind Eng Chem Res; 2021 Apr; 60(15):5558-5573. PubMed ID: 34795467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ALACEN: A Holistic Herbaceous Biomass Fractionation Process Attaining a Xylose-Rich Stream for Direct Microbial Conversion to Bioplastics.
    Bertran-Llorens S; Zhou W; Palazzolo MA; Colpa DL; Euverink GW; Krooneman J; Deuss PJ
    ACS Sustain Chem Eng; 2024 May; 12(20):7724-7738. PubMed ID: 38783842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilizing deep ocean water in yeast fermentation for enhanced mineral-rich biomass production and fermentative regulation by proteomics modulation.
    Liu CF; Zhang XF; Yu TL; Lee CL
    Heliyon; 2024 May; 10(10):e31031. PubMed ID: 38778955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning and characterization of heterologous transporters in Saccharomyces cerevisiae and identification of important amino acids for xylose utilization.
    Wang C; Bao X; Li Y; Jiao C; Hou J; Zhang Q; Zhang W; Liu W; Shen Y
    Metab Eng; 2015 Jul; 30():79-88. PubMed ID: 25944766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and marker-free refactoring of xylose-fermenting yeast strains with Cas9/CRISPR.
    Tsai CS; Kong II; Lesmana A; Million G; Zhang GC; Kim SR; Jin YS
    Biotechnol Bioeng; 2015 Nov; 112(11):2406-11. PubMed ID: 25943337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Xylose fermentation by Saccharomyces cerevisiae using endogenous xylose-assimilating genes.
    Konishi J; Fukuda A; Mutaguchi K; Uemura T
    Biotechnol Lett; 2015 Aug; 37(8):1623-30. PubMed ID: 25994575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial xylose isomerases from the mammal gut Bacteroidetes cluster function in Saccharomyces cerevisiae for effective xylose fermentation.
    Peng B; Huang S; Liu T; Geng A
    Microb Cell Fact; 2015 May; 14():70. PubMed ID: 25981595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High ethanol fermentation performance of the dry dilute acid pretreated corn stover by an evolutionarily adapted Saccharomyces cerevisiae strain.
    Qureshi AS; Zhang J; Bao J
    Bioresour Technol; 2015; 189():399-404. PubMed ID: 25930238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Limiting metabolic steps in the utilization of D-xylose by recombinant Ralstonia eutropha W50-EAB].
    Wang L; Liu G; Zhang Y; Wang Y; Ding J; Weng W
    Wei Sheng Wu Xue Bao; 2015 Feb; 55(2):164-75. PubMed ID: 25958696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Challenges for the production of bioethanol from biomass using recombinant yeasts.
    Kricka W; Fitzpatrick J; Bond U
    Adv Appl Microbiol; 2015; 92():89-125. PubMed ID: 26003934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid Production from Hemicellulose and Holocellulose Hydrolysate of Palm Empty Fruit Bunches by Newly Isolated Oleaginous Yeasts.
    Tampitak S; Louhasakul Y; Cheirsilp B; Prasertsan P
    Appl Biochem Biotechnol; 2015 Jul; 176(6):1801-14. PubMed ID: 26026262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of the propagation strategy for obtaining robust Saccharomyces cerevisiae cells that efficiently co-ferment xylose and glucose in lignocellulosic hydrolysates.
    Tomás-Pejó E; Olsson L
    Microb Biotechnol; 2015 Nov; 8(6):999-1005. PubMed ID: 25989314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elimination of carbon catabolite repression in Clostridium acetobutylicum--a journey toward simultaneous use of xylose and glucose.
    Bruder M; Moo-Young M; Chung DA; Chou CP
    Appl Microbiol Biotechnol; 2015 Sep; 99(18):7579-88. PubMed ID: 25981995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion.
    Turner TL; Zhang GC; Kim SR; Subramaniam V; Steffen D; Skory CD; Jang JY; Yu BJ; Jin YS
    Appl Microbiol Biotechnol; 2015 Oct; 99(19):8023-33. PubMed ID: 26043971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cofactor Specificity of the Bifunctional Alcohol and Aldehyde Dehydrogenase (AdhE) in Wild-Type and Mutant Clostridium thermocellum and Thermoanaerobacterium saccharolyticum.
    Zheng T; Olson DG; Tian L; Bomble YJ; Himmel ME; Lo J; Hon S; Shaw AJ; van Dijken JP; Lynd LR
    J Bacteriol; 2015 Aug; 197(15):2610-9. PubMed ID: 26013492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Yeast Tolerance to Various Stresses Relies on the Trehalose-6P Synthase (Tps1) Protein, Not on Trehalose.
    Petitjean M; Teste MA; François JM; Parrou JL
    J Biol Chem; 2015 Jun; 290(26):16177-90. PubMed ID: 25934390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.