These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 25929072)

  • 1. [Influence of substrate COD on methane production in single-chambered microbial electrolysis cell].
    Teng WK; Liu GL; Luo HP; Zhang RD; Fu SY
    Huan Jing Ke Xue; 2015 Mar; 36(3):1021-6. PubMed ID: 25929072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen production and wastewater treatment in a microbial electrolysis cell with a biocathode.
    Xu Y; Jiang Y; Chen Y; Zhu S; Shen S
    Water Environ Res; 2014 Jul; 86(7):649-53. PubMed ID: 25112032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the anode feeding composition on the performance of a continuous-flow methane-producing microbial electrolysis cell.
    Zeppilli M; Villano M; Aulenta F; Lampis S; Vallini G; Majone M
    Environ Sci Pollut Res Int; 2015 May; 22(10):7349-60. PubMed ID: 24994102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scaling-up of membraneless microbial electrolysis cells (MECs) for domestic wastewater treatment: Bottlenecks and limitations.
    Escapa A; San-Martín MI; Mateos R; Morán A
    Bioresour Technol; 2015 Mar; 180():72-8. PubMed ID: 25590425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of sulfide and production of methane from carbon dioxide in microbial fuel cells-microbial electrolysis cell (MFCs-MEC) coupled system.
    Jiang Y; Su M; Li D
    Appl Biochem Biotechnol; 2014 Mar; 172(5):2720-31. PubMed ID: 24425301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Onset Investigation on Dynamic Change of Biohythane Generation and Microbial Structure in Dual-chamber versus Single-chamber Microbial Electrolysis Cells.
    Luo S; Liu F; Fu B; He K; Yang H; Zhang X; Liang P; Huang X
    Water Res; 2021 Aug; 201():117326. PubMed ID: 34147740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of a semi-pilot tubular microbial electrolysis cell (MEC) under several hydraulic retention times and applied voltages.
    Gil-Carrera L; Escapa A; Carracedo B; Morán A; Gómez X
    Bioresour Technol; 2013 Oct; 146():63-69. PubMed ID: 23911817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced energy consumption during low strength domestic wastewater treatment in a semi-pilot tubular microbial electrolysis cell.
    Gil-Carrera L; Escapa A; Moreno R; Morán A
    J Environ Manage; 2013 Jun; 122():1-7. PubMed ID: 23524371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of organic carbon and nitrogen in a membraneless flow-through microbial electrolysis cell.
    Hussain A; Lebrun FM; Tartakovsky B
    Enzyme Microb Technol; 2017 Jul; 102():41-48. PubMed ID: 28465059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen and methane production from swine wastewater using microbial electrolysis cells.
    Wagner RC; Regan JM; Oh SE; Zuo Y; Logan BE
    Water Res; 2009 Mar; 43(5):1480-8. PubMed ID: 19138783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial electrolysis cell.
    Cusick RD; Ullery ML; Dempsey BA; Logan BE
    Water Res; 2014 May; 54():297-306. PubMed ID: 24583521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing bioelectrochemical hydrogen production from industrial wastewater using Ni-foam cathodes in a microbial electrolysis cell pilot plant.
    Guerrero-Sodric O; Baeza JA; Guisasola A
    Water Res; 2024 Jun; 256():121616. PubMed ID: 38657305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of ammonia on electrochemical active biofilm in microbial electrolysis cells for synthetic swine wastewater treatment.
    Wang N; Feng Y; Li Y; Zhang L; Liu J; Li N; He W
    Water Res; 2022 Jul; 219():118570. PubMed ID: 35597221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioelectrochemical anaerobic sewage treatment technology for Arctic communities.
    Tartakovsky B; Kleiner Y; Manuel MF
    Environ Sci Pollut Res Int; 2018 Nov; 25(33):32844-32850. PubMed ID: 28105595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of a continuous flow microbial electrolysis cell (MEC) fed with domestic wastewater.
    Escapa A; Gil-Carrera L; García V; Morán A
    Bioresour Technol; 2012 Aug; 117():55-62. PubMed ID: 22609714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple syntrophic interactions drive biohythane production from waste sludge in microbial electrolysis cells.
    Liu Q; Ren ZJ; Huang C; Liu B; Ren N; Xing D
    Biotechnol Biofuels; 2016; 9():162. PubMed ID: 27489567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the set anode potential on the performance and internal energy losses of a methane-producing microbial electrolysis cell.
    Villano M; Ralo C; Zeppilli M; Aulenta F; Majone M
    Bioelectrochemistry; 2016 Feb; 107():1-6. PubMed ID: 26342333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significance of biological hydrogen oxidation in a continuous single-chamber microbial electrolysis cell.
    Lee HS; Rittmann BE
    Environ Sci Technol; 2010 Feb; 44(3):948-54. PubMed ID: 20030379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of applied potential on phosphine formation in synthetic wastewater treatment by Microbial Electrolysis Cell (MEC).
    Liu W; Niu X; Chen W; An S; Sheng H
    Chemosphere; 2017 Apr; 173():172-179. PubMed ID: 28110006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.