BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 25929294)

  • 1. The saccharopine pathway in seed development and stress response of maize.
    Kiyota E; Pena IA; Arruda P
    Plant Cell Environ; 2015 Nov; 38(11):2450-61. PubMed ID: 25929294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide analysis of lysine catabolism in bacteria reveals new connections with osmotic stress resistance.
    Neshich IA; Kiyota E; Arruda P
    ISME J; 2013 Dec; 7(12):2400-10. PubMed ID: 23887172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic manipulation of lysine catabolism in maize kernels.
    Reyes AR; Bonin CP; Houmard NM; Huang S; Malvar TM
    Plant Mol Biol; 2009 Jan; 69(1-2):81-9. PubMed ID: 18839315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The lysine-ketoglutarate reductase-saccharopine dehydrogenase is involved in the osmo-induced synthesis of pipecolic acid in rapeseed leaf tissues.
    Moulin M; Deleu C; Larher F; Bouchereau A
    Plant Physiol Biochem; 2006; 44(7-9):474-82. PubMed ID: 17023168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lysine Catabolism Through the Saccharopine Pathway: Enzymes and Intermediates Involved in Plant Responses to Abiotic and Biotic Stress.
    Arruda P; Barreto P
    Front Plant Sci; 2020; 11():587. PubMed ID: 32508857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The catabolic function of the alpha-aminoadipic acid pathway in plants is associated with unidirectional activity of lysine-oxoglutarate reductase, but not saccharopine dehydrogenase.
    Zhu X; Tang G; Galili G
    Biochem J; 2000 Oct; 351(Pt 1):215-20. PubMed ID: 10998364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of opaque2 in the control of lysine-degrading activities in developing maize endosperm.
    Kemper EL; Neto GC; Papes F; Moraes KC; Leite A; Arruda P
    Plant Cell; 1999 Oct; 11(10):1981-94. PubMed ID: 10521527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lysine degradation through the saccharopine pathway in bacteria: LKR and SDH in bacteria and its relationship to the plant and animal enzymes.
    Serrano GC; Rezende e Silva Figueira T; Kiyota E; Zanata N; Arruda P
    FEBS Lett; 2012 Mar; 586(6):905-11. PubMed ID: 22449979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification and characterization of bifunctional lysine-ketoglutarate reductase/saccharopine dehydrogenase from developing soybean seeds.
    Miron D; Ben-Yaacov S; Reches D; Schupper A; Galili G
    Plant Physiol; 2000 Jun; 123(2):655-64. PubMed ID: 10859195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in transcriptional regulatory mechanisms functioning for free lysine content and seed storage protein accumulation in rice grain.
    Kawakatsu T; Takaiwa F
    Plant Cell Physiol; 2010 Dec; 51(12):1964-74. PubMed ID: 21037241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of lysine catabolism in Arabidopsis through concertedly regulated synthesis of the two distinct gene products of the composite AtLKR/SDH locus.
    Stepansky A; Yao Y; Tang G; Galili G
    J Exp Bot; 2005 Feb; 56(412):525-36. PubMed ID: 15569707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-lysine corn generated by endosperm-specific suppression of lysine catabolism using RNAi.
    Houmard NM; Mainville JL; Bonin CP; Huang S; Luethy MH; Malvar TM
    Plant Biotechnol J; 2007 Sep; 5(5):605-14. PubMed ID: 17553105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The activity of the Arabidopsis bifunctional lysine-ketoglutarate reductase/saccharopine dehydrogenase enzyme of lysine catabolism is regulated by functional interaction between its two enzyme domains.
    Zhu X; Tang G; Galili G
    J Biol Chem; 2002 Dec; 277(51):49655-61. PubMed ID: 12393892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lysine catabolism in Haemonchus contortus and Teladorsagia circumcincta.
    Umair S; Bland RJ; Simpson HV
    Exp Parasitol; 2012 May; 131(1):101-6. PubMed ID: 22459625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue distribution of indices of lysine catabolism in growing swine.
    Gatrell SK; Berg LE; Barnard JT; Grimmett JG; Barnes KM; Blemings KP
    J Anim Sci; 2013 Jan; 91(1):238-47. PubMed ID: 23048139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and transcriptional analysis of plant genes encoding the bifunctional lysine ketoglutarate reductase saccharopine dehydrogenase enzyme.
    Anderson OD; Coleman-Derr D; Gu YQ; Heath S
    BMC Plant Biol; 2010 Jun; 10():113. PubMed ID: 20565711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The enzymology of lysine catabolism in rice seeds--isolation, characterization, and regulatory properties of a lysine 2-oxoglutarate reductase/saccharopine dehydrogenase bifunctional polypeptide.
    Gaziola SA; Teixeira CM; Lugli J; Sodek L; Azevedo RA
    Eur J Biochem; 1997 Jul; 247(1):364-71. PubMed ID: 9249048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The bifunctional LKR/SDH locus of plants also encodes a highly active monofunctional lysine-ketoglutarate reductase using a polyadenylation signal located within an intron.
    Tang G; Zhu X; Gakiere B; Levanony H; Kahana A; Galili G
    Plant Physiol; 2002 Sep; 130(1):147-54. PubMed ID: 12226495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modifying lysine biosynthesis and catabolism in corn with a single bifunctional expression/silencing transgene cassette.
    Frizzi A; Huang S; Gilbertson LA; Armstrong TA; Luethy MH; Malvar TM
    Plant Biotechnol J; 2008 Jan; 6(1):13-21. PubMed ID: 17725550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the two saccharopine dehydrogenase isozymes of lysine catabolism encoded by the single composite AtLKR/SDH locus of Arabidopsis.
    Zhu X; Tang G; Galili G
    Plant Physiol; 2000 Nov; 124(3):1363-72. PubMed ID: 11080311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.