These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 25929480)

  • 1. Interfacing solid-state nanopores with gel media to slow DNA translocations.
    Waugh M; Carlsen A; Sean D; Slater GW; Briggs K; Kwok H; Tabard-Cossa V
    Electrophoresis; 2015 Aug; 36(15):1759-67. PubMed ID: 25929480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gel mesh as "brake" to slow down DNA translocation through solid-state nanopores.
    Tang Z; Liang Z; Lu B; Li J; Hu R; Zhao Q; Yu D
    Nanoscale; 2015 Aug; 7(31):13207-14. PubMed ID: 26181489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slowing down DNA translocation through solid-state nanopores by pressure.
    Zhang H; Zhao Q; Tang Z; Liu S; Li Q; Fan Z; Yang F; You L; Li X; Zhang J; Yu D
    Small; 2013 Dec; 9(24):4112-7. PubMed ID: 23828716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased dwell time and occurrence of dsDNA translocation events through solid state nanopores by LiCl concentration gradients.
    Bello J; Mowla M; Troise N; Soyring J; Borgesi J; Shim J
    Electrophoresis; 2019 Apr; 40(7):1082-1090. PubMed ID: 30580437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interpreting the conductance blockades of DNA translocations through solid-state nanopores.
    Carlsen AT; Zahid OK; Ruzicka J; Taylor EW; Hall AR
    ACS Nano; 2014 May; 8(5):4754-60. PubMed ID: 24758739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slowing single-stranded DNA translocation through a solid-state nanopore by decreasing the nanopore diameter.
    Akahori R; Haga T; Hatano T; Yanagi I; Ohura T; Hamamura H; Iwasaki T; Yokoi T; Anazawa T
    Nanotechnology; 2014 Jul; 25(27):275501. PubMed ID: 24960034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capture and Translocation Characteristics of Short Branched DNA Labels in Solid-State Nanopores.
    Karau P; Tabard-Cossa V
    ACS Sens; 2018 Jul; 3(7):1308-1315. PubMed ID: 29874054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optoelectronic control of surface charge and translocation dynamics in solid-state nanopores.
    Di Fiori N; Squires A; Bar D; Gilboa T; Moustakas TD; Meller A
    Nat Nanotechnol; 2013 Dec; 8(12):946-51. PubMed ID: 24185943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slowing down DNA translocation through a nanopore by lowering fluid temperature.
    Yeh LH; Zhang M; Joo SW; Qian S
    Electrophoresis; 2012 Dec; 33(23):3458-65. PubMed ID: 23124983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Langevin dynamcis simulations of driven polymer translocation into a cross-linked gel.
    Sean D; Slater GW
    Electrophoresis; 2017 Mar; 38(5):653-658. PubMed ID: 28059440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanotechnological selection.
    Demming A
    Nanotechnology; 2013 Jan; 24(2):020201. PubMed ID: 23242125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing the sensitivity of DNA detection by structurally modified solid-state nanopore.
    Lee K; Lee H; Lee SH; Kim HM; Kim KB; Kim SJ
    Nanoscale; 2017 Nov; 9(45):18012-18021. PubMed ID: 29131223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface modification of solid-state nanopores for sticky-free translocation of single-stranded DNA.
    Tang Z; Lu B; Zhao Q; Wang J; Luo K; Yu D
    Small; 2014 Nov; 10(21):4332-9. PubMed ID: 25044955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA Translocations through Nanopores under Nanoscale Preconfinement.
    Briggs K; Madejski G; Magill M; Kastritis K; de Haan HW; McGrath JL; Tabard-Cossa V
    Nano Lett; 2018 Feb; 18(2):660-668. PubMed ID: 29087723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanopores formed by DNA origami: a review.
    Bell NA; Keyser UF
    FEBS Lett; 2014 Oct; 588(19):3564-70. PubMed ID: 24928438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tetramethylammonium-filled protein nanopore for single-molecule analysis.
    Wang Y; Yao F; Kang XF
    Anal Chem; 2015 Oct; 87(19):9991-7. PubMed ID: 26337294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and practical applications of molybdenum disulfide nanopores.
    Graf M; Lihter M; Thakur M; Georgiou V; Topolancik J; Ilic BR; Liu K; Feng J; Astier Y; Radenovic A
    Nat Protoc; 2019 Apr; 14(4):1130-1168. PubMed ID: 30903110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slowing down and stretching DNA with an electrically tunable nanopore in a p-n semiconductor membrane.
    Melnikov DV; Leburton JP; Gracheva ME
    Nanotechnology; 2012 Jun; 23(25):255501. PubMed ID: 22652932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of polyacrylamide gel pore size from Ferguson plots of linear DNA fragments. II. Comparison of gels with different crosslinker concentrations, added agarose and added linear polyacrylamide.
    Holmes DL; Stellwagen NC
    Electrophoresis; 1991 Sep; 12(9):612-9. PubMed ID: 1752240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translocation of a polymer through a nanopore starting from a confining nanotube.
    Sean D; de Haan HW; Slater GW
    Electrophoresis; 2015 Mar; 36(5):682-91. PubMed ID: 25461428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.