These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 25929554)

  • 1. Use of early phase online vision for grip configuration is modulated according to movement duration in prehension.
    Fukui T; Inui T
    Exp Brain Res; 2015 Aug; 233(8):2257-68. PubMed ID: 25929554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of viewing the moving limb and target object during the early phase of movement on the online control of grasping.
    Fukui T; Inui T
    Hum Mov Sci; 2006 Jun; 25(3):349-71. PubMed ID: 16707178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of visual feedback of the hand according to target view availability in the online control of prehension movements.
    Fukui T; Inui T
    Hum Mov Sci; 2013 Aug; 32(4):580-95. PubMed ID: 24054896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaching and grasping with restricted peripheral vision.
    González-Alvarez C; Subramanian A; Pardhan S
    Ophthalmic Physiol Opt; 2007 May; 27(3):265-74. PubMed ID: 17470239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of visual feedback from the recent past on the programming of grip aperture is grasp-specific, shared between hands, and mediated by sensorimotor memory not task set.
    Tang R; Whitwell RL; Goodale MA
    Cognition; 2015 May; 138():49-63. PubMed ID: 25704582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Computational Model for Aperture Control in Reach-to-Grasp Movement Based on Predictive Variability.
    Takemura N; Fukui T; Inui T
    Front Comput Neurosci; 2015; 9():143. PubMed ID: 26696874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic adjustments toward unseen visual targets during grasping movements.
    Chen Z; Saunders JA
    Exp Brain Res; 2016 Jul; 234(7):2091-2103. PubMed ID: 26979436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grasping deficits and adaptations in adults with stereo vision losses.
    Melmoth DR; Finlay AL; Morgan MJ; Grant S
    Invest Ophthalmol Vis Sci; 2009 Aug; 50(8):3711-20. PubMed ID: 19339741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An optimal velocity for online limb-target regulation processes?
    Tremblay L; Crainic VA; de Grosbois J; Bhattacharjee A; Kennedy A; Hansen S; Welsh TN
    Exp Brain Res; 2017 Jan; 235(1):29-40. PubMed ID: 27618816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How vision affects kinematic properties of pantomimed prehension movements.
    Fukui T; Inui T
    Front Psychol; 2013; 4():44. PubMed ID: 23404470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-line visual control of grasping movements.
    Volcic R; Domini F
    Exp Brain Res; 2016 Aug; 234(8):2165-77. PubMed ID: 26996387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Older Adolescents and Young Adults With Autism Spectrum Disorder Have Difficulty Chaining Motor Acts When Performing Prehension Movements Compared to Typically Developing Peers.
    Fukui T; Sano M; Tanaka A; Suzuki M; Kim S; Agarie H; Fukatsu R; Nishimaki K; Nakajima Y; Wada M
    Front Hum Neurosci; 2018; 12():430. PubMed ID: 30405382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model of the coupling between grip aperture and hand transport during human prehension.
    Hu Y; Osu R; Okada M; Goodale MA; Kawato M
    Exp Brain Res; 2005 Nov; 167(2):301-4. PubMed ID: 16217646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Grasping without vision: time normalizing grip aperture profiles yields spurious grip scaling to target size.
    Whitwell RL; Goodale MA
    Neuropsychologia; 2013 Aug; 51(10):1878-87. PubMed ID: 23796704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gait and reach-to-grasp movements are mutually modified when performed simultaneously.
    Rinaldi NM; Moraes R
    Hum Mov Sci; 2015 Apr; 40():38-58. PubMed ID: 25528437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interference of grasping observation during prehension, a behavioural study.
    Dijkerman HC; Smit MC
    Exp Brain Res; 2007 Jan; 176(2):387-96. PubMed ID: 16917772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of material properties and object orientation on precision grip kinematics.
    Paulun VC; Gegenfurtner KR; Goodale MA; Fleming RW
    Exp Brain Res; 2016 Aug; 234(8):2253-65. PubMed ID: 27016090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of object shape and visual feedback on hand configuration during grasping.
    Schettino LF; Adamovich SV; Poizner H
    Exp Brain Res; 2003 Jul; 151(2):158-66. PubMed ID: 12783144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gaze-grasp coordination in obstacle avoidance: differences between binocular and monocular viewing.
    Grant S
    Exp Brain Res; 2015 Dec; 233(12):3489-505. PubMed ID: 26298046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How removing visual information affects grasping movements.
    Bozzacchi C; Brenner E; Smeets JB; Volcic R; Domini F
    Exp Brain Res; 2018 Apr; 236(4):985-995. PubMed ID: 29399704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.