These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 25930124)
1. Fate of volatile aromatic hydrocarbons in the wastewater from six textile dyeing wastewater treatment plants. Ning XA; Wang JY; Li RJ; Wen WB; Chen CM; Wang YJ; Yang ZY; Liu JY Chemosphere; 2015 Oct; 136():50-5. PubMed ID: 25930124 [TBL] [Abstract][Full Text] [Related]
2. Influence of different textile fibers on characterization of dyeing wastewater and final effluent. Dos Santos RF; Ramlow H; Dolzan N; Machado RAF; de Aguiar CRL; Marangoni C Environ Monit Assess; 2018 Oct; 190(11):693. PubMed ID: 30382411 [TBL] [Abstract][Full Text] [Related]
3. Elimination and ecotoxicity evaluation of phthalic acid esters from textile-dyeing wastewater. Liang J; Ning XA; Kong M; Liu D; Wang G; Cai H; Sun J; Zhang Y; Lu X; Yuan Y Environ Pollut; 2017 Dec; 231(Pt 1):115-122. PubMed ID: 28797900 [TBL] [Abstract][Full Text] [Related]
4. Textiles wastewater treatment technology: A review. Deng D; Lamssali M; Aryal N; Ofori-Boadu A; Jha MK; Samuel RE Water Environ Res; 2020 Oct; 92(10):1805-1810. PubMed ID: 32790931 [TBL] [Abstract][Full Text] [Related]
5. Aromatic amine contents, component distributions and risk assessment in sludge from 10 textile-dyeing plants. Ning XA; Liang JY; Li RJ; Hong Z; Wang YJ; Chang KL; Zhang YP; Yang ZY Chemosphere; 2015 Sep; 134():367-73. PubMed ID: 25973862 [TBL] [Abstract][Full Text] [Related]
6. Anaerobic-aerobic treatment of high-strength and recalcitrant textile dyeing effluents. Yao HY; Guo H; Shen F; Li T; Show DY; Ling M; Yan YG; Show KY; Lee DJ Bioresour Technol; 2023 Jul; 379():129060. PubMed ID: 37075851 [TBL] [Abstract][Full Text] [Related]
7. Toxicity evaluation of textile dyeing effluent and its possible relationship with chemical oxygen demand. Liang J; Ning XA; Sun J; Song J; Lu J; Cai H; Hong Y Ecotoxicol Environ Saf; 2018 Dec; 166():56-62. PubMed ID: 30245294 [TBL] [Abstract][Full Text] [Related]
8. Levels, composition profiles and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in sludge from ten textile dyeing plants. Ning XA; Lin MQ; Shen LZ; Zhang JH; Wang JY; Wang YJ; Yang ZY; Liu JY Environ Res; 2014 Jul; 132():112-8. PubMed ID: 24769559 [TBL] [Abstract][Full Text] [Related]
9. Treatment and toxicity reduction of textile dyeing wastewater using the electrocoagulation-electroflotation process. Kim HL; Cho JB; Park YJ; Cho IH J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016 Jul; 51(8):661-8. PubMed ID: 27089124 [TBL] [Abstract][Full Text] [Related]
10. Persistent organic and inorganic pollutants in the effluents from the textile dyeing industries: Ecotoxicology appraisal via a battery of biotests. Methneni N; Morales-González JA; Jaziri A; Mansour HB; Fernandez-Serrano M Environ Res; 2021 May; 196():110956. PubMed ID: 33675797 [TBL] [Abstract][Full Text] [Related]
11. Reduction of adsorbed dyes content in the discharged sludge coming from an industrial textile wastewater treatment plant using aerobic activated sludge process. Haddad M; Abid S; Hamdi M; Bouallagui H J Environ Manage; 2018 Oct; 223():936-946. PubMed ID: 30007889 [TBL] [Abstract][Full Text] [Related]
12. Fate of aromatic hydrocarbons in Italian municipal wastewater systems: an overview of wastewater treatment using conventional activated-sludge processes (CASP) and membrane bioreactors (MBRs). Fatone F; Di Fabio S; Bolzonella D; Cecchi F Water Res; 2011 Jan; 45(1):93-104. PubMed ID: 20804998 [TBL] [Abstract][Full Text] [Related]
13. Textiles. Choudri BS; Baawain M Water Environ Res; 2016 Oct; 88(10):1433-45. PubMed ID: 27620097 [TBL] [Abstract][Full Text] [Related]
14. Pollution characteristics and fate of microfibers in the wastewater from textile dyeing wastewater treatment plant. Xu X; Hou Q; Xue Y; Jian Y; Wang L Water Sci Technol; 2018 Dec; 78(10):2046-2054. PubMed ID: 30629532 [TBL] [Abstract][Full Text] [Related]
15. Decomposition and biodegradability enhancement of textile wastewater using a combination of electron beam irradiation and activated sludge process. Mohd Nasir N; Teo Ming T; Ahmadun FR; Sobri S Water Sci Technol; 2010; 62(1):42-7. PubMed ID: 20595752 [TBL] [Abstract][Full Text] [Related]
16. Influence of hydraulic retention time in a two-phase upflow anaerobic sludge blanket reactor treating textile dyeing effluent using sago effluent as the co-substrate. Senthilkumar M; Gnanapragasam G; Arutchelvan V; Nagarajan S Environ Sci Pollut Res Int; 2011 May; 18(4):649-54. PubMed ID: 21063797 [TBL] [Abstract][Full Text] [Related]
17. Control of C/N ratio for butyric acid production from textile wastewater sludge by anaerobic digestion. Fu B; Zhang J; Fan J; Wang J; Liu H Water Sci Technol; 2012; 65(5):883-9. PubMed ID: 22339023 [TBL] [Abstract][Full Text] [Related]
18. Investigation of textile dyeing effluent using activated sludge system to assess the removal efficiency. Malik A; Hussain M; Uddin F; Raza W; Hussain S; Habiba UE; Malik T; Ajmal Z Water Environ Res; 2021 Dec; 93(12):2931-2940. PubMed ID: 34570384 [TBL] [Abstract][Full Text] [Related]
19. Efficacy and mechanism of enhanced Sb(V) removal from textile wastewater using ferric flocs in aerobic biological treatment. Zhang S; Baig SA; Xu X Chemosphere; 2024 Jun; 357():141920. PubMed ID: 38636914 [TBL] [Abstract][Full Text] [Related]
20. Unified, simple and decentralized treatment process for synthetic and real-time dye contaminated wastewaters. Venkataraman A; Babu L; Aravamudan K J Hazard Mater; 2022 Feb; 423(Pt B):127059. PubMed ID: 34547690 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]