BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 25930125)

  • 1. Fluoride bioaccumulation by hydroponic cultures of camellia (Camellia japonica spp.) and sugar cane (Saccharum officinarum spp.).
    Camarena-Rangel N; Rojas Velázquez AN; Santos-Díaz Mdel S
    Chemosphere; 2015 Oct; 136():56-62. PubMed ID: 25930125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zein Nanoparticles Uptake and Translocation in Hydroponically Grown Sugar Cane Plants.
    Prasad A; Astete CE; Bodoki AE; Windham M; Bodoki E; Sabliov CM
    J Agric Food Chem; 2018 Jul; 66(26):6544-6551. PubMed ID: 28767239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of phytoaccumulation perspective of
    Giri AK; Mishra PC; Nayak RK; Dey SK
    Int J Phytoremediation; 2024; 26(1):45-51. PubMed ID: 37291794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cs phytoremediation by Sorghum bicolor cultivated in soil and in hydroponic system.
    Wang X; Chen C; Wang J
    Int J Phytoremediation; 2017 Apr; 19(4):402-412. PubMed ID: 27739906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influences of charcoal and bamboo charcoal amendment on soil-fluoride fractions and bioaccumulation of fluoride in tea plants.
    Gao H; Zhang Z; Wan X
    Environ Geochem Health; 2012 Oct; 34(5):551-62. PubMed ID: 22580712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soil fluoride fractions and their bioavailability to tea plants (Camellia sinensis L.).
    Yi X; Qiao S; Ma L; Wang J; Ruan J
    Environ Geochem Health; 2017 Oct; 39(5):1005-1016. PubMed ID: 27591762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal levels in sugar cane (Saccharum spp.) samples from an area under the influence of a municipal landfill and a medical waste treatment system in Brazil.
    Segura-Muñoz SI; da Silva Oliveira A; Nikaido M; Trevilato TM; Bocio A; Takayanagui AM; Domingo JL
    Environ Int; 2006 Jan; 32(1):52-7. PubMed ID: 15990169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth Responses and Accumulation Characteristics of Three Ornamentals Under Copper and Lead Contamination in a Hydroponic-Culture Experiment.
    Shao Z; Lu W; Nasar J; Zhang J; Yan L
    Bull Environ Contam Toxicol; 2019 Dec; 103(6):854-859. PubMed ID: 31595321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytoremediation of fluoride with garden ornamentals Nerium oleander, Portulaca oleracea, and Pogonatherum crinitum.
    Khandare RV; Desai SB; Bhujbal SS; Watharkar AD; Biradar SP; Pawar PK; Govindwar SP
    Environ Sci Pollut Res Int; 2017 Mar; 24(7):6833-6839. PubMed ID: 28097483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response of spinach (Spinacea oleracea) to the added fluoride in an alkaline soil.
    Jha SK; Nayak AK; Sharma YK
    Food Chem Toxicol; 2008 Sep; 46(9):2968-71. PubMed ID: 18639373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Search for a plant for phytoremediation--what can we learn from field and hydroponic studies?
    Zabłudowska E; Kowalska J; Jedynak L; Wojas S; Skłodowska A; Antosiewicz DM
    Chemosphere; 2009 Oct; 77(3):301-7. PubMed ID: 19733893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organ-wise accumulation of fluoride in Prosopis juliflora and its potential for phytoremediation of fluoride contaminated soil.
    Saini P; Khan S; Baunthiyal M; Sharma V
    Chemosphere; 2012 Oct; 89(5):633-5. PubMed ID: 22704972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoremediation assessment of Gomphrena globosa and Zinnia elegans grown in arsenic-contaminated hydroponic conditions as a safe and feasible alternative to be applied in arsenic-contaminated soils of the Bengal Delta.
    Signes-Pastor AJ; Munera-Picazo S; Burló F; Cano-Lamadrid M; Carbonell-Barrachina AA
    Environ Monit Assess; 2015 Jun; 187(6):387. PubMed ID: 26022848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluoride absorption, transportation and tolerance mechanism in Camellia sinensis, and its bioavailability and health risk assessment: a systematic review.
    Peng CY; Xu XF; Ren YF; Niu HL; Yang YQ; Hou RY; Wan XC; Cai HM
    J Sci Food Agric; 2021 Jan; 101(2):379-387. PubMed ID: 32623727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenate and fluoride enhanced each other's uptake in As-sensitive plant Pteris ensiformis.
    Das S; de Oliveira LM; da Silva E; Ma LQ
    Chemosphere; 2017 Aug; 180():448-454. PubMed ID: 28419958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnesium and iron deficiencies alter Cd accumulation in Salix viminalis L.
    Borišev M; Pajević S; Nikolić N; Orlović S; Župunski M; Pilipović A; Kebert M
    Int J Phytoremediation; 2016; 18(2):164-70. PubMed ID: 26247775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential of Vetiveria zizanoides L. Nash for phytoremediation of plutonium ((239)Pu): Chelate assisted uptake and translocation.
    Singh S; Fulzele DP; Kaushik CP
    Ecotoxicol Environ Saf; 2016 Oct; 132():140-4. PubMed ID: 27318195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of pH and calcium on the uptake of fluoride by tea plants (Camellia sinensis L.).
    Ruan J; Ma L; Shi Y; Han W
    Ann Bot; 2004 Jan; 93(1):97-105. PubMed ID: 14644914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screening biological traits and fluoride contents of native vegetations in arid environments to select efficiently fluoride-tolerant native plant species for in-situ phytoremediation.
    Boukhris A; Laffont-Schwob I; Mezghani I; Kadri LE; Prudent P; Pricop A; Tatoni T; Chaieb M
    Chemosphere; 2015 Jan; 119():217-223. PubMed ID: 25014764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mercury uptake and effects on growth in Jatropha curcas.
    Marrugo-Negrete J; Durango-Hernández J; Pinedo-Hernández J; Enamorado-Montes G; Díez S
    J Environ Sci (China); 2016 Oct; 48():120-125. PubMed ID: 27745657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.