These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1298 related articles for article (PubMed ID: 25930695)

  • 1. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome.
    Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ
    Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tandem metal-oxide affinity chromatography for enhanced depth of phosphoproteome analysis.
    Beckers GJ; Hoehenwarter W; Röhrig H; Conrath U; Weckwerth W
    Methods Mol Biol; 2014; 1072():621-32. PubMed ID: 24136551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid and reproducible phosphopeptide enrichment by tandem metal oxide affinity chromatography: application to boron deficiency induced phosphoproteomics.
    Chen Y; Hoehenwarter W
    Plant J; 2019 Apr; 98(2):370-384. PubMed ID: 30589143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of phosphorylated proteins.
    Turkina MV; Vener AV
    Methods Mol Biol; 2007; 355():305-16. PubMed ID: 17093319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative measurement of phosphopeptides and proteins via stable isotope labeling in Arabidopsis and functional phosphoproteomic strategies.
    Li N
    Methods Mol Biol; 2012; 876():17-32. PubMed ID: 22576083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of an off-line capillary column IMAC phosphopeptide enrichment method for label-free phosphorylation relative quantification.
    Choi H; Lee S; Jun CD; Park ZY
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Oct; 879(28):2991-7. PubMed ID: 21930439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative analysis of global phosphorylation changes with high-resolution tandem mass spectrometry and stable isotopic labeling.
    Kweon HK; Andrews PC
    Methods; 2013 Jun; 61(3):251-9. PubMed ID: 23611819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping Plant Phosphoproteome with Improved Tandem MOAC and Label-Free Quantification.
    Chen Y; Liang X
    Methods Mol Biol; 2021; 2358():105-112. PubMed ID: 34270049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enrichment of phosphorylated proteins and peptides from complex mixtures using metal oxide/hydroxide affinity chromatography (MOAC).
    Wolschin F; Wienkoop S; Weckwerth W
    Proteomics; 2005 Nov; 5(17):4389-97. PubMed ID: 16222723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SILAC-based temporal phosphoproteomics.
    Francavilla C; Hekmat O; Blagoev B; Olsen JV
    Methods Mol Biol; 2014; 1188():125-48. PubMed ID: 25059609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and synthesis of an immobilized metal affinity chromatography and metal oxide affinity chromatography hybrid material for improved phosphopeptide enrichment.
    Yang DS; Ding XY; Min HP; Li B; Su MX; Niu MM; Di B; Yan F
    J Chromatogr A; 2017 Jul; 1505():56-62. PubMed ID: 28533032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From Phosphoproteome to Modeling of Plant Signaling Pathways.
    Zakhartsev M; Pertl-Obermeyer H; Schulze WX
    Methods Mol Biol; 2016; 1394():245-259. PubMed ID: 26700054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isotope-labeling and affinity enrichment of phosphopeptides for proteomic analysis using liquid chromatography-tandem mass spectrometry.
    Kota U; Chien KY; Goshe MB
    Methods Mol Biol; 2009; 564():303-21. PubMed ID: 19544030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating the Efficiency of Phosphopeptide Identification by Tandem Mass Spectrometry.
    Hsu CC; Xue L; Arrington JV; Wang P; Paez Paez JS; Zhou Y; Zhu JK; Tao WA
    J Am Soc Mass Spectrom; 2017 Jun; 28(6):1127-1135. PubMed ID: 28283928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enrichment and Analysis of Intact Phosphoproteins in Arabidopsis Seedlings.
    Aryal UK; Ross AR; Krochko JE
    PLoS One; 2015; 10(7):e0130763. PubMed ID: 26158488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thylakoid phosphoproteins: identification of phosphorylation sites.
    Rokka A; Aro EM; Vener AV
    Methods Mol Biol; 2011; 684():171-86. PubMed ID: 20960130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly sensitive phosphoproteomics by tailoring solid-phase extraction to electrostatic repulsion-hydrophilic interaction chromatography.
    Loroch S; Zahedi RP; Sickmann A
    Anal Chem; 2015 Feb; 87(3):1596-604. PubMed ID: 25405705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of different fractionation strategies for in-depth phosphoproteomics by liquid chromatography tandem mass spectrometry.
    Yeh TT; Ho MY; Chen WY; Hsu YC; Ku WC; Tseng HW; Chen ST; Chen SF
    Anal Bioanal Chem; 2019 Jun; 411(15):3417-3424. PubMed ID: 31011783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel Fe3O4@TiO2 core-shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis.
    Li Y; Xu X; Qi D; Deng C; Yang P; Zhang X
    J Proteome Res; 2008 Jun; 7(6):2526-38. PubMed ID: 18473453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphoprotein isotope-coded solid-phase tag approach for enrichment and quantitative analysis of phosphopeptides from complex mixtures.
    Qian WJ; Goshe MB; Camp DG; Yu LR; Tang K; Smith RD
    Anal Chem; 2003 Oct; 75(20):5441-50. PubMed ID: 14714534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 65.