These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 2593136)

  • 1. Functional characteristics of the cardiac sarcolemmal monocarboxylate transporter.
    Trosper TL; Philipson KD
    J Membr Biol; 1989 Nov; 112(1):15-23. PubMed ID: 2593136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactate transport is mediated by a membrane-bound carrier in rat skeletal muscle sarcolemmal vesicles.
    Roth DA; Brooks GA
    Arch Biochem Biophys; 1990 Jun; 279(2):377-85. PubMed ID: 2350184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lactate transport by cardiac sarcolemmal vesicles.
    Trosper TL; Philipson KD
    Am J Physiol; 1987 May; 252(5 Pt 1):C483-9. PubMed ID: 3578501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for a lactate transport system in the sarcolemmal membrane of the perfused rabbit heart: kinetics of unidirectional influx, carrier specificity and effects of glucagon.
    Mann GE; Zlokovic BV; Yudilevich DL
    Biochim Biophys Acta; 1985 Oct; 819(2):241-8. PubMed ID: 4041458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lactate transport by skeletal muscle sarcolemmal vesicles.
    McDermott JC; Bonen A
    Mol Cell Biochem; 1993 May; 122(2):113-21. PubMed ID: 8232242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lactate and pyruvate transport is dominated by a pH gradient-sensitive carrier in rat skeletal muscle sarcolemmal vesicles.
    Roth DA; Brooks GA
    Arch Biochem Biophys; 1990 Jun; 279(2):386-94. PubMed ID: 2350185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trans-stimulation of lactate transport from rat sarcolemmal membrane vesicles.
    Brown MA; Brooks GA
    Arch Biochem Biophys; 1994 Aug; 313(1):22-8. PubMed ID: 8053682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of ATP sensitive potassium channel of isolated guinea pig ventricular myocytes by sarcolemmal monocarboxylate transport.
    Coetzee WA
    Cardiovasc Res; 1992 Nov; 26(11):1077-86. PubMed ID: 1291085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. L(+)-lactate binding to a protein in rat skeletal muscle plasma membranes.
    McCullagh KJ; Bonen A
    Can J Appl Physiol; 1995 Mar; 20(1):112-24. PubMed ID: 7742767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of sodium and pyruvate interactions of the two carrier systems specific of mono- and di- or tricarboxylic acids by renal brush-border membrane vesicles.
    Mengual R; Claude-Schlageter MH; Poiree JC; Yagello M; Sudaka P
    J Membr Biol; 1989 Jun; 108(3):197-205. PubMed ID: 2778796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathways for carboxylic acid transport by rabbit renal brush border membrane vesicles.
    Nord E; Wright SH; Kippen I; Wright EM
    Am J Physiol; 1982 Nov; 243(5):F456-62. PubMed ID: 7137347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic analysis of monocarboxylate uptake into perfused rat hearts.
    Dennis SC; Kohn MC; Anderson GJ; Garfinkel D
    J Mol Cell Cardiol; 1985 Oct; 17(10):987-95. PubMed ID: 3934390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of lactate and other monocarboxylates across mammalian plasma membranes.
    Poole RC; Halestrap AP
    Am J Physiol; 1993 Apr; 264(4 Pt 1):C761-82. PubMed ID: 8476015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Helix 8 and helix 10 are involved in substrate recognition in the rat monocarboxylate transporter MCT1.
    Rahman B; Schneider HP; Bröer A; Deitmer JW; Bröer S
    Biochemistry; 1999 Aug; 38(35):11577-84. PubMed ID: 10471310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport of pyruvate nad lactate into human erythrocytes. Evidence for the involvement of the chloride carrier and a chloride-independent carrier.
    Halestrap AP
    Biochem J; 1976 May; 156(2):193-207. PubMed ID: 942406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the inhibition by stilbene disulphonates and phloretin of lactate and pyruvate transport into rat and guinea-pig cardiac myocytes suggests the presence of two kinetically distinct carriers in heart cells.
    Wang X; Poole RC; Halestrap AP; Levi AJ
    Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):249-58. PubMed ID: 8439293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of pyruvate by luminal membrane vesicles from pars convoluta and pars recta of rabbit proximal tubule.
    Jørgensen KE; Sheikh MI
    Biochim Biophys Acta; 1988 Mar; 938(3):345-52. PubMed ID: 3349069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Training does not affect zero-trans lactate transport across mixed rat skeletal muscle sarcolemmal vesicles.
    Roth DA; Brooks GA
    J Appl Physiol (1985); 1993 Oct; 75(4):1559-65. PubMed ID: 8282604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carrier-mediated L-lactate transport in brush-border membrane vesicles from rat placenta during late gestation.
    Alonso de la Torre SR; Serrano MA; Alvarado F; Medina JM
    Biochem J; 1991 Sep; 278 ( Pt 2)(Pt 2):535-41. PubMed ID: 1654886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of L-alanine transport in cardiac sarcolemmal vesicles and into isolated cardiac myocytes.
    King N; Suleiman MS
    Pflugers Arch; 1998 Aug; 436(3):384-90. PubMed ID: 9644220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.