These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 25931509)
1. Architecture of a Host-Parasite Interface: Complex Targeting Mechanisms Revealed Through Proteomics. Gadelha C; Zhang W; Chamberlain JW; Chait BT; Wickstead B; Field MC Mol Cell Proteomics; 2015 Jul; 14(7):1911-26. PubMed ID: 25931509 [TBL] [Abstract][Full Text] [Related]
2. Cell Surface Proteomics Provides Insight into Stage-Specific Remodeling of the Host-Parasite Interface in Trypanosoma brucei. Shimogawa MM; Saada EA; Vashisht AA; Barshop WD; Wohlschlegel JA; Hill KL Mol Cell Proteomics; 2015 Jul; 14(7):1977-88. PubMed ID: 25963835 [TBL] [Abstract][Full Text] [Related]
3. On the extent and role of the small proteome in the parasitic eukaryote Trypanosoma brucei. Ericson M; Janes MA; Butter F; Mann M; Ullu E; Tschudi C BMC Biol; 2014 Feb; 12():14. PubMed ID: 24552149 [TBL] [Abstract][Full Text] [Related]
4. Loss of the BBSome perturbs endocytic trafficking and disrupts virulence of Trypanosoma brucei. Langousis G; Shimogawa MM; Saada EA; Vashisht AA; Spreafico R; Nager AR; Barshop WD; Nachury MV; Wohlschlegel JA; Hill KL Proc Natl Acad Sci U S A; 2016 Jan; 113(3):632-7. PubMed ID: 26721397 [TBL] [Abstract][Full Text] [Related]
5. Independent analysis of the flagellum surface and matrix proteomes provides insight into flagellum signaling in mammalian-infectious Trypanosoma brucei. Oberholzer M; Langousis G; Nguyen HT; Saada EA; Shimogawa MM; Jonsson ZO; Nguyen SM; Wohlschlegel JA; Hill KL Mol Cell Proteomics; 2011 Oct; 10(10):M111.010538. PubMed ID: 21685506 [TBL] [Abstract][Full Text] [Related]
6. Clathrin-dependent targeting of receptors to the flagellar pocket of procyclic-form Trypanosoma brucei. Hung CH; Qiao X; Lee PT; Lee MG Eukaryot Cell; 2004 Aug; 3(4):1004-14. PubMed ID: 15302833 [TBL] [Abstract][Full Text] [Related]
7. Exocytosis and protein secretion in Trypanosoma. Geiger A; Hirtz C; Bécue T; Bellard E; Centeno D; Gargani D; Rossignol M; Cuny G; Peltier JB BMC Microbiol; 2010 Jan; 10():20. PubMed ID: 20102621 [TBL] [Abstract][Full Text] [Related]
8. Proteomics on the rims: insights into the biology of the nuclear envelope and flagellar pocket of trypanosomes. Field MC; Adung'a V; Obado S; Chait BT; Rout MP Parasitology; 2012 Aug; 139(9):1158-67. PubMed ID: 22309600 [TBL] [Abstract][Full Text] [Related]
9. Global proteomic analysis in trypanosomes reveals unique proteins and conserved cellular processes impacted by arginine methylation. Lott K; Li J; Fisk JC; Wang H; Aletta JM; Qu J; Read LK J Proteomics; 2013 Oct; 91():210-25. PubMed ID: 23872088 [TBL] [Abstract][Full Text] [Related]
10. A MORN Repeat Protein Facilitates Protein Entry into the Flagellar Pocket of Trypanosoma brucei. Morriswood B; Schmidt K Eukaryot Cell; 2015 Nov; 14(11):1081-93. PubMed ID: 26318396 [TBL] [Abstract][Full Text] [Related]
11. Sequence requirements for trafficking of the CRAM transmembrane protein to the flagellar pocket of African trypanosomes. Yang H; Russell DG; Zheng B; Eiki M; Lee MG Mol Cell Biol; 2000 Jul; 20(14):5149-63. PubMed ID: 10866671 [TBL] [Abstract][Full Text] [Related]
12. KHARON Is an Essential Cytoskeletal Protein Involved in the Trafficking of Flagellar Membrane Proteins and Cell Division in African Trypanosomes. Sanchez MA; Tran KD; Valli J; Hobbs S; Johnson E; Gluenz E; Landfear SM J Biol Chem; 2016 Sep; 291(38):19760-73. PubMed ID: 27489106 [TBL] [Abstract][Full Text] [Related]
14. The Trypanosome Exocyst: A Conserved Structure Revealing a New Role in Endocytosis. Boehm CM; Obado S; Gadelha C; Kaupisch A; Manna PT; Gould GW; Munson M; Chait BT; Rout MP; Field MC PLoS Pathog; 2017 Jan; 13(1):e1006063. PubMed ID: 28114397 [TBL] [Abstract][Full Text] [Related]
15. Conservation and divergence within the clathrin interactome of Trypanosoma cruzi. Kalb LC; Frederico YC; Boehm C; Moreira CM; Soares MJ; Field MC Sci Rep; 2016 Aug; 6():31212. PubMed ID: 27502971 [TBL] [Abstract][Full Text] [Related]
16. The membrane-bound histidine acid phosphatase TbMBAP1 is essential for endocytosis and membrane recycling in Trypanosoma brucei. Engstler M; Weise F; Bopp K; Grünfelder CG; Günzel M; Heddergott N; Overath P J Cell Sci; 2005 May; 118(Pt 10):2105-18. PubMed ID: 15855239 [TBL] [Abstract][Full Text] [Related]
17. TbG63, a golgin involved in Golgi architecture in Trypanosoma brucei. Ramirez IB; de Graffenried CL; Ebersberger I; Yelinek J; He CY; Price A; Warren G J Cell Sci; 2008 May; 121(Pt 9):1538-46. PubMed ID: 18411253 [TBL] [Abstract][Full Text] [Related]
18. Novel Effects of Lapatinib Revealed in the African Trypanosome by Using Hypothesis-Generating Proteomics and Chemical Biology Strategies. Guyett PJ; Behera R; Ogata Y; Pollastri M; Mensa-Wilmot K Antimicrob Agents Chemother; 2017 Feb; 61(2):. PubMed ID: 27872081 [TBL] [Abstract][Full Text] [Related]
19. The nuclear proteome of Trypanosoma brucei. Goos C; Dejung M; Janzen CJ; Butter F; Kramer S PLoS One; 2017; 12(7):e0181884. PubMed ID: 28727848 [TBL] [Abstract][Full Text] [Related]
20. Prediction of Protein Complexes in Crozier TWM; Tinti M; Larance M; Lamond AI; Ferguson MAJ Mol Cell Proteomics; 2017 Dec; 16(12):2254-2267. PubMed ID: 29042480 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]