BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 2593175)

  • 1. Comparison of different computerized classification methods for predicting carcinogenicity from short-term test results.
    Benigni R; Pellizzone G; Giuliani A
    J Toxicol Environ Health; 1989; 28(4):427-44. PubMed ID: 2593175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short-term tests for defining mutagenic carcinogens.
    Waters MD; Stack HF; Jackson MA
    IARC Sci Publ; 1999; (146):499-536. PubMed ID: 10353401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Which rules for assembling short-term test batteries to predict carcinogenicity?
    Benigni R; Giuliani A
    Mol Toxicol; 1987; 1(2-3):143-66. PubMed ID: 3449755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Guidelines for the evaluation of chemicals for carcinogenicity. Committee on Carcinogenicity of Chemicals in Food, Consumer Products and the Environment.
    Rep Health Soc Subj (Lond); 1991; 42():1-80. PubMed ID: 1763238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of false positive rates of peto and poly-3 methods for long-term carcinogenicity data analysis using multiple comparison adjustment method suggested by Lin and Rahman.
    Rahman MA; Lin KK
    J Biopharm Stat; 2008; 18(5):949-58. PubMed ID: 18781527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ability of short-term tests to predict carcinogenicity can be summarized in a single index.
    Benigni R
    J Toxicol Environ Health; 1991 Sep; 34(1):27-37. PubMed ID: 1890692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing and predicting carcinogenicity and mode of action using conventional and toxicogenomics methods.
    Waters MD; Jackson M; Lea I
    Mutat Res; 2010 Dec; 705(3):184-200. PubMed ID: 20399889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interrelationships among carcinogenicity, mutagenicity, acute toxicity, and chemical structure in a genotoxicity data base.
    Benigni R; Andreoli C; Giuliani A
    J Toxicol Environ Health; 1989; 27(1):1-20. PubMed ID: 2724362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Animal carcinogenicity studies: implications for the REACH system.
    Knight A; Bailey J; Balcombe J
    Altern Lab Anim; 2006 Mar; 34 Suppl 1():139-47. PubMed ID: 16555967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparability of results of postnatal and long-term tests for carcinogenicity.
    Sýkora I; Vortel V
    Neoplasma; 1993; 40(5):321-7. PubMed ID: 8272162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational approach to the evaluation of short-term tests: analysis of a homogeneous data base.
    Benigni R; Giuliani A
    J Toxicol Environ Health; 1985; 16(3-4):333-53. PubMed ID: 4087307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of rodent carcinogenicity utilizing a battery of in vitro and in vivo genotoxicity tests.
    Kim BS; Margolin BH
    Environ Mol Mutagen; 1999; 34(4):297-304. PubMed ID: 10618179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Issues in the design and interpretation of chronic toxicity and carcinogenicity studies in rodents: approaches to dose selection.
    Rhomberg LR; Baetcke K; Blancato J; Bus J; Cohen S; Conolly R; Dixit R; Doe J; Ekelman K; Fenner-Crisp P; Harvey P; Hattis D; Jacobs A; Jacobson-Kram D; Lewandowski T; Liteplo R; Pelkonen O; Rice J; Somers D; Turturro A; West W; Olin S
    Crit Rev Toxicol; 2007; 37(9):729-837. PubMed ID: 17957539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of k for the poly-k test with application to animal carcinogenicity studies.
    Moon H; Ahn H; Kodell RL; Lee JJ
    Stat Med; 2003 Aug; 22(16):2619-36. PubMed ID: 12898548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens II. Further analysis of mammalian cell results, relative predictivity and tumour profiles.
    Kirkland D; Aardema M; Müller L; Makoto H
    Mutat Res; 2006 Sep; 608(1):29-42. PubMed ID: 16769241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Efficiency of evaluating the carcinogenicity of chemical substances in short-term tests and the SAR model].
    Tarasov VA; Tsarenko NA; Mel'nik VA; Mustafaev ON; Makedonov GP; Tarasov AV
    Genetika; 2009 Dec; 45(12):1674-84. PubMed ID: 20198980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of potential biomarkers of genotoxicity and carcinogenicity in L5178Y mouse lymphoma cells by cDNA microarray analysis.
    Kim JY; Kwon J; Kim JE; Koh WS; Chung MK; Yoon S; Song CW; Lee M
    Environ Mol Mutagen; 2005; 45(1):80-9. PubMed ID: 15612046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Are tumor incidence rates from chronic bioassays telling us what we need to know about carcinogens?
    Gaylor DW
    Regul Toxicol Pharmacol; 2005 Mar; 41(2):128-33. PubMed ID: 15698536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new highly specific method for predicting the carcinogenic potential of pharmaceuticals in rodents using enhanced MCASE QSAR-ES software.
    Matthews EJ; Contrera JF
    Regul Toxicol Pharmacol; 1998 Dec; 28(3):242-64. PubMed ID: 10049796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer-aided rodent carcinogenicity prediction.
    Lagunin AA; Dearden JC; Filimonov DA; Poroikov VV
    Mutat Res; 2005 Oct; 586(2):138-46. PubMed ID: 16112600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.