These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 25932009)

  • 1. Rapid adaptation of multisensory integration in vestibular pathways.
    Carriot J; Jamali M; Cullen KE
    Front Syst Neurosci; 2015; 9():59. PubMed ID: 25932009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Critical Role of Somatosensation in Postural Control Following Spaceflight: Vestibularly Deficient Astronauts Are Not Able to Maintain Upright Stance During Compromised Somatosensation.
    Ozdemir RA; Goel R; Reschke MF; Wood SJ; Paloski WH
    Front Physiol; 2018; 9():1680. PubMed ID: 30538640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vestibular ataxia following shuttle flights: effects of microgravity on otolith-mediated sensorimotor control of posture.
    Paloski WH; Black FO; Reschke MF; Calkins DS; Shupert C
    Am J Otol; 1993 Jan; 14(1):9-17. PubMed ID: 8424485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Challenges to the Vestibular System in Space: How the Brain Responds and Adapts to Microgravity.
    Carriot J; Mackrous I; Cullen KE
    Front Neural Circuits; 2021; 15():760313. PubMed ID: 34803615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The statistics of the vestibular input experienced during natural self-motion differ between rodents and primates.
    Carriot J; Jamali M; Chacron MJ; Cullen KE
    J Physiol; 2017 Apr; 595(8):2751-2766. PubMed ID: 28083981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vestibular training promotes adaptation of multisensory integration in postural control.
    Appiah-Kubi KO; Wright WG
    Gait Posture; 2019 Sep; 73():215-220. PubMed ID: 31376748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. COMPASS: Computations for Orientation and Motion Perception in Altered Sensorimotor States.
    Kravets VG; Dixon JB; Ahmed NR; Clark TK
    Front Neural Circuits; 2021; 15():757817. PubMed ID: 34720889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of vestibular system and the cerebellum in adapting to gravitoinertial, spatial orientation and postural challenges of REM sleep.
    Dharani NE
    Med Hypotheses; 2005; 65(1):83-9. PubMed ID: 15893123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age-related reweighting of visual and vestibular cues for vertical perception.
    Alberts BBGT; Selen LPJ; Medendorp WP
    J Neurophysiol; 2019 Apr; 121(4):1279-1288. PubMed ID: 30699005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vestibular-somatosensory convergence in head movement control during locomotion after long-duration space flight.
    Mulavara AP; Ruttley T; Cohen HS; Peters BT; Miller C; Brady R; Merkle L; Bloomberg JJ
    J Vestib Res; 2012 Jan; 22(2):153-66. PubMed ID: 23000615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Psychophysical Evaluation of Sensory Reweighting in Bilateral Vestibulopathy.
    Medendorp WP; Alberts BBGT; Verhagen WIM; Koppen M; Selen LPJ
    Front Neurol; 2018; 9():377. PubMed ID: 29910766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bayesian quantification of sensory reweighting in a familial bilateral vestibular disorder (DFNA9).
    Alberts BBGT; Selen LPJ; Verhagen WIM; Pennings RJE; Medendorp WP
    J Neurophysiol; 2018 Mar; 119(3):1209-1221. PubMed ID: 29357473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vestibular plasticity following orbital spaceflight: recovery from postflight postural instability.
    Black FO; Paloski WH; Doxey-Gasway DD; Reschke MF
    Acta Otolaryngol Suppl; 1995; 520 Pt 2():450-4. PubMed ID: 8749187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurovestibular and sensorimotor studies in space and Earth benefits.
    Clément G; Reschke M; Wood S
    Curr Pharm Biotechnol; 2005 Aug; 6(4):267-83. PubMed ID: 16101466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vestibular contributions to high-level sensorimotor functions.
    Medendorp WP; Selen LJP
    Neuropsychologia; 2017 Oct; 105():144-152. PubMed ID: 28163007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective skin sensitivity changes and sensory reweighting following short-duration space flight.
    Lowrey CR; Perry SD; Strzalkowski ND; Williams DR; Wood SJ; Bent LR
    J Appl Physiol (1985); 2014 Mar; 116(6):683-92. PubMed ID: 24458748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mission-critical tasks for assessing risks from vestibular and sensorimotor adaptation during space exploration.
    Clément G; Moudy SC; Macaulay TR; Bishop MO; Wood SJ
    Front Physiol; 2022; 13():1029161. PubMed ID: 36505047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing Proprioceptive Countermeasures to Mitigate Postural and Locomotor Control Deficits After Long-Duration Spaceflight.
    Macaulay TR; Peters BT; Wood SJ; Clément GR; Oddsson L; Bloomberg JJ
    Front Syst Neurosci; 2021; 15():658985. PubMed ID: 33986648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural correlates of sensory prediction errors in monkeys: evidence for internal models of voluntary self-motion in the cerebellum.
    Cullen KE; Brooks JX
    Cerebellum; 2015 Feb; 14(1):31-4. PubMed ID: 25287644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virtual signals of head rotation induce gravity-dependent inferences of linear acceleration.
    Khosravi-Hashemi N; Forbes PA; Dakin CJ; Blouin JS
    J Physiol; 2019 Nov; 597(21):5231-5246. PubMed ID: 31483492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.