These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 25932051)

  • 1. Improving protein-ligand binding site prediction accuracy by classification of inner pocket points using local features.
    Krivák R; Hoksza D
    J Cheminform; 2015; 7():12. PubMed ID: 25932051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. P2Rank: machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure.
    Krivák R; Hoksza D
    J Cheminform; 2018 Aug; 10(1):39. PubMed ID: 30109435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fpocket: an open source platform for ligand pocket detection.
    Le Guilloux V; Schmidtke P; Tuffery P
    BMC Bioinformatics; 2009 Jun; 10():168. PubMed ID: 19486540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeepBindPoc: a deep learning method to rank ligand binding pockets using molecular vector representation.
    Zhang H; Saravanan KM; Lin J; Liao L; Ng JT; Zhou J; Wei Y
    PeerJ; 2020; 8():e8864. PubMed ID: 32292649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting protein-ligand binding site using support vector machine with protein properties.
    Wong GY; Leung FH; Ling SH
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(6):1517-29. PubMed ID: 24407309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pocket to concavity: a tool for the refinement of protein-ligand binding site shape from alpha spheres.
    Kudo G; Hirao T; Yoshino R; Shigeta Y; Hirokawa T
    Bioinformatics; 2023 Apr; 39(4):. PubMed ID: 37086438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and validation of an epitope prediction tool for swine (PigMatrix) based on the pocket profile method.
    Gutiérrez AH; Martin WD; Bailey-Kellogg C; Terry F; Moise L; De Groot AS
    BMC Bioinformatics; 2015 Sep; 16():290. PubMed ID: 26370412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting cryptic ligand binding sites based on normal modes guided conformational sampling.
    Zheng W
    Proteins; 2021 Apr; 89(4):416-426. PubMed ID: 33244830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calculating an optimal box size for ligand docking and virtual screening against experimental and predicted binding pockets.
    Feinstein WP; Brylinski M
    J Cheminform; 2015; 7():18. PubMed ID: 26082804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of different ranking methods in protein-ligand binding site prediction.
    Gao J; Liu Q; Kang H; Cao Z; Zhu R
    Int J Mol Sci; 2012; 13(7):8752-8761. PubMed ID: 22942732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligand-binding site prediction using ligand-interacting and binding site-enriched protein triangles.
    Xie ZR; Hwang MJ
    Bioinformatics; 2012 Jun; 28(12):1579-85. PubMed ID: 22495747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of cavities on protein surface using multiple computational approaches for drug binding site prediction.
    Zhang Z; Li Y; Lin B; Schroeder M; Huang B
    Bioinformatics; 2011 Aug; 27(15):2083-8. PubMed ID: 21636590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PocketAnchor: Learning structure-based pocket representations for protein-ligand interaction prediction.
    Li S; Tian T; Zhang Z; Zou Z; Zhao D; Zeng J
    Cell Syst; 2023 Aug; 14(8):692-705.e6. PubMed ID: 37516103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SVM prediction of ligand-binding sites in bacterial lipoproteins employing shape and physio-chemical descriptors.
    Kadam K; Prabhakar P; Jayaraman VK
    Protein Pept Lett; 2012 Nov; 19(11):1155-62. PubMed ID: 22587788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Sequence-Based Dynamic Ensemble Learning System for Protein Ligand-Binding Site Prediction.
    Chen P; Hu S; Zhang J; Gao X; Li J; Xia J; Wang B
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(5):901-912. PubMed ID: 26661785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into an original pocket-ligand pair classification: a promising tool for ligand profile prediction.
    Pérot S; Regad L; Reynès C; Spérandio O; Miteva MA; Villoutreix BO; Camproux AC
    PLoS One; 2013; 8(6):e63730. PubMed ID: 23840299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites.
    Laurie AT; Jackson RM
    Bioinformatics; 2005 May; 21(9):1908-16. PubMed ID: 15701681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. fpocket: online tools for protein ensemble pocket detection and tracking.
    Schmidtke P; Le Guilloux V; Maupetit J; Tufféry P
    Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W582-9. PubMed ID: 20478829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. eFindSite: improved prediction of ligand binding sites in protein models using meta-threading, machine learning and auxiliary ligands.
    Brylinski M; Feinstein WP
    J Comput Aided Mol Des; 2013 Jun; 27(6):551-67. PubMed ID: 23838840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale comparison of four binding site detection algorithms.
    Schmidtke P; Souaille C; Estienne F; Baurin N; Kroemer RT
    J Chem Inf Model; 2010 Dec; 50(12):2191-200. PubMed ID: 20828173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.