These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 25932338)

  • 1. Effectiveness of biphasic calcium phosphate block bone substitutes processed using a modified extrusion method in rabbit calvarial defects.
    Lim HC; Song KH; You H; Lee JS; Jung UW; Kim SY; Choi SH
    J Periodontal Implant Sci; 2015 Apr; 45(2):46-55. PubMed ID: 25932338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensionally printed biphasic calcium phosphate blocks with different pore diameters for regeneration in rabbit calvarial defects.
    Seo YW; Park JY; Lee DN; Jin X; Cha JK; Paik JW; Choi SH
    Biomater Res; 2022 Jun; 26(1):25. PubMed ID: 35706067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone Regeneration Potential of Biphasic Nanocalcium Phosphate with High Hydroxyapatite/Tricalcium Phosphate Ratios in Rabbit Calvarial Defects.
    Pripatnanont P; Praserttham P; Suttapreyasri S; Leepong N; Monmaturapoj N
    Int J Oral Maxillofac Implants; 2016; 31(2):294-303. PubMed ID: 27004276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of bone morphogenetic protein and proportion of hydroxyapatite on new bone formation in biphasic calcium phosphate graft: two pilot studies in animal bony defect model.
    Yun PY; Kim YK; Jeong KI; Park JC; Choi YJ
    J Craniomaxillofac Surg; 2014 Dec; 42(8):1909-17. PubMed ID: 25443868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Healing of rabbit calvarial bone defects using biphasic calcium phosphate ceramics made of submicron-sized grains with a hierarchical pore structure.
    Park JW; Kim ES; Jang JH; Suh JY; Park KB; Hanawa T
    Clin Oral Implants Res; 2010 Mar; 21(3):268-76. PubMed ID: 20074242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative evaluation of biphasic calcium phosphate and biphasic calcium phosphate collagen composite on osteoconductive potency in rabbit calvarial defect.
    Lee EU; Kim DJ; Lim HC; Lee JS; Jung UW; Choi SH
    Biomater Res; 2015; 19():1. PubMed ID: 26331072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo comparative investigation of three synthetic graft materials with varying compositions processed using different methods.
    Lim HC; Kim KT; Lee JS; Jung UW; Choi SH
    Int J Oral Maxillofac Implants; 2015; 30(6):1280-6. PubMed ID: 26574853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative study of biphasic calcium phosphate with beta-tricalcium phosphate in rat cranial defects--A molecular-biological and histological study.
    Kunert-Keil C; Scholz F; Gedrange T; Gredes T
    Ann Anat; 2015 May; 199():79-84. PubMed ID: 24439994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sinus Floor Augmentation Comparing an In Situ Hardening Biphasic Calcium Phosphate (Hydroxyapatite/β-Tricalcium Phosphate) Bone Graft Substitute with a Particulate Biphasic Calcium Phosphate (Hydroxyapatite/β-Tricalcium Phosphate) Bone Graft Substitute: An Experimental Study in Sheep.
    Wildburger A; Bubalo V; Magyar M; Nagursky H; Jakse N; Schmelzeisen R; Sauerbier S
    Tissue Eng Part C Methods; 2017 Jul; 23(7):404-411. PubMed ID: 28605989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of different hydroxyapatite:β-tricalcium phosphate ratios on the osteoconductivity of biphasic calcium phosphate in the rabbit sinus model.
    Lim HC; Zhang ML; Lee JS; Jung UW; Choi SH
    Int J Oral Maxillofac Implants; 2015; 30(1):65-72. PubMed ID: 25265122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of moldable, in situ hardening calcium phosphate bone graft substitutes.
    Schmidlin PR; Nicholls F; Kruse A; Zwahlen RA; Weber FE
    Clin Oral Implants Res; 2013 Feb; 24(2):149-57. PubMed ID: 22092691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone regeneration using three-dimensional hexahedron channel structured BCP block in rabbit calvarial defects.
    Pae HC; Kang JH; Cha JK; Lee JS; Paik JW; Jung UW; Choi SH
    J Biomed Mater Res B Appl Biomater; 2019 Oct; 107(7):2254-2262. PubMed ID: 30675991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regeneration of rabbit calvarial defects using biphasic calcium phosphate and a strontium hydroxyapatite-containing collagen membrane.
    Kitayama S; Wong LO; Ma L; Hao J; Kasugai S; Lang NP; Mattheos N
    Clin Oral Implants Res; 2016 Dec; 27(12):e206-e214. PubMed ID: 25916272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone regenerative efficacy of biphasic calcium phosphate collagen composite as a carrier of rhBMP-2.
    Lee EU; Lim HC; Hong JY; Lee JS; Jung UW; Choi SH
    Clin Oral Implants Res; 2016 Nov; 27(11):e91-e99. PubMed ID: 25675839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteoconductive effects of calcium phosphate glass cement grafts in rabbit calvarial defects.
    Lim HC; Sohn JY; Park JC; Um YJ; Jung UW; Kim CS; Lee YK; Choi SH
    J Biomed Mater Res B Appl Biomater; 2010 Oct; 95(1):47-52. PubMed ID: 20665684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone tissue modelling and remodelling following guided bone regeneration in combination with biphasic calcium phosphate materials presenting different microporosity.
    Dahlin C; Obrecht M; Dard M; Donos N
    Clin Oral Implants Res; 2015 Jul; 26(7):814-22. PubMed ID: 24593049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel use of cranial epidural space in rabbits as an animal model to investigate bone volume augmentation potential of different bone graft substitutes.
    Valdivia-Gandur I; Engelke W; Beltrán V; Borie E; Fuentes R; Manzanares-Céspedes MC
    Head Face Med; 2016 Dec; 12(1):35. PubMed ID: 27906068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Volumetric bone regenerative efficacy of biphasic calcium phosphate-collagen composite block loaded with rhBMP-2 in vertical bone augmentation model of a rabbit calvarium.
    Kim JW; Jung IH; Lee KI; Jung UW; Kim CS; Choi SH; Cho KS; Yun JH
    J Biomed Mater Res A; 2012 Dec; 100(12):3304-13. PubMed ID: 22733619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative performance of three ceramic bone graft substitutes.
    Hing KA; Wilson LF; Buckland T
    Spine J; 2007; 7(4):475-90. PubMed ID: 17630146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effect of Whitlockite as an Osteoconductive Synthetic Bone Substitute Material in Animal Bony Defect Model.
    Ku JK; Kim IH; Shim JH; Kim YH; Kim BH; Kim YK; Yun PY
    Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.