BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 25932652)

  • 1. Molecular Mechanism of Photozipper, a Light-Regulated Dimerizing Module Consisting of the bZIP and LOV Domains of Aureochrome-1.
    Nakatani Y; Hisatomi O
    Biochemistry; 2015 Jun; 54(21):3302-13. PubMed ID: 25932652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blue light-induced conformational changes in a light-regulated transcription factor, aureochrome-1.
    Hisatomi O; Takeuchi K; Zikihara K; Ookubo Y; Nakatani Y; Takahashi F; Tokutomi S; Kataoka H
    Plant Cell Physiol; 2013 Jan; 54(1):93-106. PubMed ID: 23220692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A light-regulated bZIP module, photozipper, induces the binding of fused proteins to the target DNA sequence in a blue light-dependent manner.
    Hisatomi O; Furuya K
    Photochem Photobiol Sci; 2015 Nov; 14(11):1998-2006. PubMed ID: 26441326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blue light-induced dimerization of monomeric aureochrome-1 enhances its affinity for the target sequence.
    Hisatomi O; Nakatani Y; Takeuchi K; Takahashi F; Kataoka H
    J Biol Chem; 2014 Jun; 289(25):17379-91. PubMed ID: 24790107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative analyses of the equilibria among DNA complexes of a blue-light-regulated bZIP module, Photozipper.
    Nakatani Y; Hisatomi O
    Biophys Physicobiol; 2018; 15():8-17. PubMed ID: 29450110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dimeric Structure of the Blue Light Sensor Protein Photozipper in the Active State.
    Ozeki K; Tsukuno H; Nagashima H; Hisatomi O; Mino H
    Biochemistry; 2018 Feb; 57(5):494-497. PubMed ID: 29261300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transmission of light signals from the light-oxygen-voltage core via the hydrophobic region of the β-sheet surface in aureochrome-1.
    Nakajima H; Kobayashi I; Adachi Y; Hisatomi O
    Sci Rep; 2021 Jun; 11(1):11995. PubMed ID: 34099847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Mechanism of Light-Induced Conformational Switching of the LOV Domain in Aureochrome-1.
    Kobayashi I; Nakajima H; Hisatomi O
    Biochemistry; 2020 Jul; 59(28):2592-2601. PubMed ID: 32567839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blue-light-induced unfolding of the Jα helix allows for the dimerization of aureochrome-LOV from the diatom Phaeodactylum tricornutum.
    Herman E; Sachse M; Kroth PG; Kottke T
    Biochemistry; 2013 May; 52(18):3094-101. PubMed ID: 23621750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of a Native-like Aureochrome 1a LOV Domain Dimer from Phaeodactylum tricornutum.
    Banerjee A; Herman E; Kottke T; Essen LO
    Structure; 2016 Jan; 24(1):171-178. PubMed ID: 26688213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoreactions of aureochrome-1.
    Toyooka T; Hisatomi O; Takahashi F; Kataoka H; Terazima M
    Biophys J; 2011 Jun; 100(11):2801-9. PubMed ID: 21641326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Allosterically regulated unfolding of the A'α helix exposes the dimerization site of the blue-light-sensing aureochrome-LOV domain.
    Herman E; Kottke T
    Biochemistry; 2015 Feb; 54(7):1484-92. PubMed ID: 25621532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AUREOCHROME, a photoreceptor required for photomorphogenesis in stramenopiles.
    Takahashi F; Yamagata D; Ishikawa M; Fukamatsu Y; Ogura Y; Kasahara M; Kiyosue T; Kikuyama M; Wada M; Kataoka H
    Proc Natl Acad Sci U S A; 2007 Dec; 104(49):19625-30. PubMed ID: 18003911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aureochromes - Blue Light Receptors.
    Matiiv AB; Chekunova EM
    Biochemistry (Mosc); 2018 Jun; 83(6):662-673. PubMed ID: 30195323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blue-light-regulated transcription factor, Aureochrome, in photosynthetic stramenopiles.
    Takahashi F
    J Plant Res; 2016 Mar; 129(2):189-97. PubMed ID: 26781435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Allosteric communication between DNA-binding and light-responsive domains of diatom class I aureochromes.
    Banerjee A; Herman E; Serif M; Maestre-Reyna M; Hepp S; Pokorny R; Kroth PG; Essen LO; Kottke T
    Nucleic Acids Res; 2016 Jul; 44(12):5957-70. PubMed ID: 27179025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-Resolved Detection of Light-Induced Dimerization of Monomeric Aureochrome-1 and Change in Affinity for DNA.
    Akiyama Y; Nakasone Y; Nakatani Y; Hisatomi O; Terazima M
    J Phys Chem B; 2016 Aug; 120(30):7360-70. PubMed ID: 27404115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dimerization processes for light-regulated transcription factor Photozipper visualized by high-speed atomic force microscopy.
    Tsuji A; Yamashita H; Hisatomi O; Abe M
    Sci Rep; 2022 Aug; 12(1):12903. PubMed ID: 35941201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Target Sequence Recognition by a Light-Activatable Basic Leucine Zipper Factor, Photozipper.
    Tateyama S; Kobayashi I; Hisatomi O
    Biochemistry; 2018 Nov; 57(47):6615-6623. PubMed ID: 30388362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution and phylogeny of the blue light receptors aureochromes in eukaryotes.
    Ishikawa M; Takahashi F; Nozaki H; Nagasato C; Motomura T; Kataoka H
    Planta; 2009 Aug; 230(3):543-52. PubMed ID: 19544070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.