These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. A Large-Scale RNAi Screen Identifies SGK1 as a Key Survival Kinase for GBM Stem Cells. Kulkarni S; Goel-Bhattacharya S; Sengupta S; Cochran BH Mol Cancer Res; 2018 Jan; 16(1):103-114. PubMed ID: 28993509 [TBL] [Abstract][Full Text] [Related]
4. Combined expressional analysis, bioinformatics and targeted proteomics identify new potential therapeutic targets in glioblastoma stem cells. Stangeland B; Mughal AA; Grieg Z; Sandberg CJ; Joel M; Nygård S; Meling T; Murrell W; Vik Mo EO; Langmoen IA Oncotarget; 2015 Sep; 6(28):26192-215. PubMed ID: 26295306 [TBL] [Abstract][Full Text] [Related]
5. Developmental profile and regulation of the glycolytic enzyme hexokinase 2 in normal brain and glioblastoma multiforme. Wolf A; Agnihotri S; Munoz D; Guha A Neurobiol Dis; 2011 Oct; 44(1):84-91. PubMed ID: 21726646 [TBL] [Abstract][Full Text] [Related]
6. The angiogenic switch leads to a metabolic shift in human glioblastoma. Talasila KM; Røsland GV; Hagland HR; Eskilsson E; Flønes IH; Fritah S; Azuaje F; Atai N; Harter PN; Mittelbronn M; Andersen M; Joseph JV; Hossain JA; Vallar L; Noorden CJ; Niclou SP; Thorsen F; Tronstad KJ; Tzoulis C; Bjerkvig R; Miletic H Neuro Oncol; 2017 Mar; 19(3):383-393. PubMed ID: 27591677 [TBL] [Abstract][Full Text] [Related]
7. Hypoxia induced CA9 inhibitory targeting by two different sulfonamide derivatives including acetazolamide in human glioblastoma. Said HM; Hagemann C; Carta F; Katzer A; Polat B; Staab A; Scozzafava A; Anacker J; Vince GH; Flentje M; Supuran CT Bioorg Med Chem; 2013 Jul; 21(13):3949-57. PubMed ID: 23706268 [TBL] [Abstract][Full Text] [Related]
8. Compensatory cross-talk between autophagy and glycolysis regulates senescence and stemness in heterogeneous glioblastoma tumor subpopulations. Martell E; Kuzmychova H; Senthil H; Kaul E; Chokshi CR; Venugopal C; Anderson CM; Singh SK; Sharif T Acta Neuropathol Commun; 2023 Jul; 11(1):110. PubMed ID: 37420311 [TBL] [Abstract][Full Text] [Related]
9. Cancer stem cell molecular reprogramming of the Warburg effect in glioblastomas: a new target gleaned from an old concept. Yuen CA; Asuthkar S; Guda MR; Tsung AJ; Velpula KK CNS Oncol; 2016; 5(2):101-8. PubMed ID: 26997129 [TBL] [Abstract][Full Text] [Related]
10. Targeted Proteomics to Assess the Response to Anti-Angiogenic Treatment in Human Glioblastoma (GBM). Demeure K; Fack F; Duriez E; Tiemann K; Bernard A; Golebiewska A; Bougnaud S; Bjerkvig R; Domon B; Niclou SP Mol Cell Proteomics; 2016 Feb; 15(2):481-92. PubMed ID: 26243272 [TBL] [Abstract][Full Text] [Related]
11. Hypoxia-mediated upregulation of MCT1 expression supports the glycolytic phenotype of glioblastomas. Miranda-Gonçalves V; Granja S; Martinho O; Honavar M; Pojo M; Costa BM; Pires MM; Pinheiro C; Cordeiro M; Bebiano G; Costa P; Reis RM; Baltazar F Oncotarget; 2016 Jul; 7(29):46335-46353. PubMed ID: 27331625 [TBL] [Abstract][Full Text] [Related]
12. Passenger deletions generate therapeutic vulnerabilities in cancer. Muller FL; Colla S; Aquilanti E; Manzo VE; Genovese G; Lee J; Eisenson D; Narurkar R; Deng P; Nezi L; Lee MA; Hu B; Hu J; Sahin E; Ong D; Fletcher-Sananikone E; Ho D; Kwong L; Brennan C; Wang YA; Chin L; DePinho RA Nature; 2012 Aug; 488(7411):337-42. PubMed ID: 22895339 [TBL] [Abstract][Full Text] [Related]
13. Glucose-6-phosphatase is a key metabolic regulator of glioblastoma invasion. Abbadi S; Rodarte JJ; Abutaleb A; Lavell E; Smith CL; Ruff W; Schiller J; Olivi A; Levchenko A; Guerrero-Cazares H; Quinones-Hinojosa A Mol Cancer Res; 2014 Nov; 12(11):1547-59. PubMed ID: 25001192 [TBL] [Abstract][Full Text] [Related]
15. Serine/threonine kinase 17A is a novel candidate for therapeutic targeting in glioblastoma. Mao P; Hever-Jardine MP; Rahme GJ; Yang E; Tam J; Kodali A; Biswal B; Fadul CE; Gaur A; Israel MA; Spinella MJ PLoS One; 2013; 8(11):e81803. PubMed ID: 24312360 [TBL] [Abstract][Full Text] [Related]
16. Hypoxia upregulates HIG2 expression and contributes to bevacizumab resistance in glioblastoma. Mao XG; Wang C; Liu DY; Zhang X; Wang L; Yan M; Zhang W; Zhu J; Li ZC; Mi C; Tian JY; Hou GD; Miao SY; Song ZX; Li JC; Xue XY Oncotarget; 2016 Jul; 7(30):47808-47820. PubMed ID: 27329597 [TBL] [Abstract][Full Text] [Related]
17. Knockdown of NAT12/NAA30 reduces tumorigenic features of glioblastoma-initiating cells. Mughal AA; Grieg Z; Skjellegrind H; Fayzullin A; Lamkhannat M; Joel M; Ahmed MS; Murrell W; Vik-Mo EO; Langmoen IA; Stangeland B Mol Cancer; 2015 Aug; 14():160. PubMed ID: 26292663 [TBL] [Abstract][Full Text] [Related]
18. PDGF receptor alpha inhibition induces apoptosis in glioblastoma cancer stem cells refractory to anti-Notch and anti-EGFR treatment. Cenciarelli C; Marei HE; Zonfrillo M; Pierimarchi P; Paldino E; Casalbore P; Felsani A; Vescovi AL; Maira G; Mangiola A Mol Cancer; 2014 Nov; 13():247. PubMed ID: 25380967 [TBL] [Abstract][Full Text] [Related]
19. Protein phosphatase 2A mediates dormancy of glioblastoma multiforme-derived tumor stem-like cells during hypoxia. Hofstetter CP; Burkhardt JK; Shin BJ; Gürsel DB; Mubita L; Gorrepati R; Brennan C; Holland EC; Boockvar JA PLoS One; 2012; 7(1):e30059. PubMed ID: 22253878 [TBL] [Abstract][Full Text] [Related]
20. Knockdown of carbohydrate sulfotransferase 12 decreases the proliferation and mobility of glioblastoma cells via the WNT/β-catenin pathway. Wang J; Xia X; Tao X; Zhao P; Deng C Bioengineered; 2021 Dec; 12(1):3934-3946. PubMed ID: 34288811 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]