These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 25933025)
1. Network-based Phenome-Genome Association Prediction by Bi-Random Walk. Xie M; Xu Y; Zhang Y; Hwang T; Kuang R PLoS One; 2015; 10(5):e0125138. PubMed ID: 25933025 [TBL] [Abstract][Full Text] [Related]
2. Transfer learning across ontologies for phenome-genome association prediction. Petegrosso R; Park S; Hwang TH; Kuang R Bioinformatics; 2017 Feb; 33(4):529-536. PubMed ID: 27797759 [TBL] [Abstract][Full Text] [Related]
3. Towards prediction and prioritization of disease genes by the modularity of human phenome-genome assembled network. Jiang JQ; Dress AW; Chen M J Integr Bioinform; 2010 Nov; 7(2):. PubMed ID: 21098881 [TBL] [Abstract][Full Text] [Related]
4. Genome-wide inferring gene-phenotype relationship by walking on the heterogeneous network. Li Y; Patra JC Bioinformatics; 2010 May; 26(9):1219-24. PubMed ID: 20215462 [TBL] [Abstract][Full Text] [Related]
5. Align human interactome with phenome to identify causative genes and networks underlying disease families. Wu X; Liu Q; Jiang R Bioinformatics; 2009 Jan; 25(1):98-104. PubMed ID: 19010805 [TBL] [Abstract][Full Text] [Related]
6. Laplacian normalization and random walk on heterogeneous networks for disease-gene prioritization. Zhao ZQ; Han GS; Yu ZG; Li J Comput Biol Chem; 2015 Aug; 57():21-8. PubMed ID: 25736609 [TBL] [Abstract][Full Text] [Related]
7. Inferring gene-phenotype associations via global protein complex network propagation. Yang P; Li X; Wu M; Kwoh CK; Ng SK PLoS One; 2011; 6(7):e21502. PubMed ID: 21799737 [TBL] [Abstract][Full Text] [Related]
8. Prioritizing disease genes with an improved dual label propagation framework. Zhang Y; Liu J; Liu X; Fan X; Hong Y; Wang Y; Huang Y; Xie M BMC Bioinformatics; 2018 Feb; 19(1):47. PubMed ID: 29422030 [TBL] [Abstract][Full Text] [Related]
9. Finding genome-transcriptome-phenome association with structured association mapping and visualization in GenAMap. Curtis RE; Yin J; Kinnaird P; Xing EP Pac Symp Biocomput; 2012; ():327-38. PubMed ID: 22174288 [TBL] [Abstract][Full Text] [Related]
10. Prioritization of candidate disease genes by enlarging the seed set and fusing information of the network topology and gene expression. Zhang SW; Shao DD; Zhang SY; Wang YB Mol Biosyst; 2014 Jun; 10(6):1400-8. PubMed ID: 24695957 [TBL] [Abstract][Full Text] [Related]
11. Co-clustering phenome-genome for phenotype classification and disease gene discovery. Hwang T; Atluri G; Xie M; Dey S; Hong C; Kumar V; Kuang R Nucleic Acids Res; 2012 Oct; 40(19):e146. PubMed ID: 22735708 [TBL] [Abstract][Full Text] [Related]
12. Gene gravity-like algorithm for disease gene prediction based on phenotype-specific network. Lin L; Yang T; Fang L; Yang J; Yang F; Zhao J BMC Syst Biol; 2017 Dec; 11(1):121. PubMed ID: 29212543 [TBL] [Abstract][Full Text] [Related]
13. Context-sensitive network-based disease genetics prediction and its implications in drug discovery. Chen Y; Xu R Bioinformatics; 2017 Apr; 33(7):1031-1039. PubMed ID: 28062449 [TBL] [Abstract][Full Text] [Related]
14. Prioritization of potential candidate disease genes by topological similarity of protein-protein interaction network and phenotype data. Luo J; Liang S J Biomed Inform; 2015 Feb; 53():229-36. PubMed ID: 25460206 [TBL] [Abstract][Full Text] [Related]
15. NCP-BiRW: A Hybrid Approach for Predicting Long Noncoding RNA-Disease Associations by Network Consistency Projection and Bi-Random Walk. Liu Y; Yang H; Zheng C; Wang K; Yan J; Cao H; Zhang Y Front Genet; 2022; 13():862272. PubMed ID: 35495166 [TBL] [Abstract][Full Text] [Related]
16. Pathway-Dependent Effectiveness of Network Algorithms for Gene Prioritization. Shim JE; Hwang S; Lee I PLoS One; 2015; 10(6):e0130589. PubMed ID: 26091506 [TBL] [Abstract][Full Text] [Related]
17. Pathway networks generated from human disease phenome. Cirincione AG; Clark KL; Kann MG BMC Med Genomics; 2018 Sep; 11(Suppl 3):75. PubMed ID: 30255817 [TBL] [Abstract][Full Text] [Related]
18. Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithm. Luo H; Wang J; Li M; Luo J; Peng X; Wu FX; Pan Y Bioinformatics; 2016 Sep; 32(17):2664-71. PubMed ID: 27153662 [TBL] [Abstract][Full Text] [Related]
19. Prioritizing candidate disease-related long non-coding RNAs by walking on the heterogeneous lncRNA and disease network. Zhou M; Wang X; Li J; Hao D; Wang Z; Shi H; Han L; Zhou H; Sun J Mol Biosyst; 2015 Mar; 11(3):760-9. PubMed ID: 25502053 [TBL] [Abstract][Full Text] [Related]
20. Inferring disease and gene set associations with rank coherence in networks. Hwang T; Zhang W; Xie M; Liu J; Kuang R Bioinformatics; 2011 Oct; 27(19):2692-9. PubMed ID: 21824970 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]