These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 25933161)
1. Effects of beam interruption time on tumor control probability in single-fractionated carbon-ion radiotherapy for non-small cell lung cancer. Inaniwa T; Kanematsu N; Suzuki M; Hawkins RB Phys Med Biol; 2015 May; 60(10):4105-21. PubMed ID: 25933161 [TBL] [Abstract][Full Text] [Related]
2. Effects of dose-delivery time structure on biological effectiveness for therapeutic carbon-ion beams evaluated with microdosimetric kinetic model. Inaniwa T; Suzuki M; Furukawa T; Kase Y; Kanematsu N; Shirai T; Hawkins RB Radiat Res; 2013 Jul; 180(1):44-59. PubMed ID: 23768075 [TBL] [Abstract][Full Text] [Related]
3. A trichrome beam model for biological dose calculation in scanned carbon-ion radiotherapy treatment planning. Inaniwa T; Kanematsu N Phys Med Biol; 2015 Jan; 60(1):437-51. PubMed ID: 25658007 [TBL] [Abstract][Full Text] [Related]
4. RBE-weighted dose conversions for patients with recurrent nasopharyngeal carcinoma receiving carbon-ion radiotherapy from the local effect model to the microdosimetric kinetic model. Zhang L; Wang W; Hu J; Lu J; Kong L Radiat Oncol; 2020 Dec; 15(1):277. PubMed ID: 33302998 [TBL] [Abstract][Full Text] [Related]
5. Biological dose representation for carbon-ion radiotherapy of unconventional fractionation. Kanematsu N; Inaniwa T Phys Med Biol; 2017 Feb; 62(3):1062-1075. PubMed ID: 28081010 [TBL] [Abstract][Full Text] [Related]
6. Sensitivity study of the microdosimetric kinetic model parameters for carbon ion radiotherapy. Dahle TJ; Magro G; Ytre-Hauge KS; Stokkevåg CH; Choi K; Mairani A Phys Med Biol; 2018 Nov; 63(22):225016. PubMed ID: 30418940 [TBL] [Abstract][Full Text] [Related]
7. Radiobiological effects of the interruption time with Monte Carlo Simulation on multiple fields in photon beams. Nakano H; Kawahara D; Tanabe S; Utsunomiya S; Takizawa T; Sakai M; Saito H; Ohta A; Kaidu M; Ishikawa H J Appl Clin Med Phys; 2020 Dec; 21(12):288-294. PubMed ID: 33270984 [TBL] [Abstract][Full Text] [Related]
8. Impact of fractionation and number of fields on dose homogeneity for intra-fractionally moving lung tumors using scanned carbon ion treatment. Wölfelschneider J; Friedrich T; Lüchtenborg R; Zink K; Scholz M; Dong L; Durante M; Bert C Radiother Oncol; 2016 Mar; 118(3):498-503. PubMed ID: 26743829 [TBL] [Abstract][Full Text] [Related]
9. Reformulation of a clinical-dose system for carbon-ion radiotherapy treatment planning at the National Institute of Radiological Sciences, Japan. Inaniwa T; Kanematsu N; Matsufuji N; Kanai T; Shirai T; Noda K; Tsuji H; Kamada T; Tsujii H Phys Med Biol; 2015 Apr; 60(8):3271-86. PubMed ID: 25826534 [TBL] [Abstract][Full Text] [Related]
10. Comparison of photon volumetric modulated arc therapy, intensity-modulated proton therapy, and intensity-modulated carbon ion therapy for delivery of hypo-fractionated thoracic radiotherapy. Chi A; Lin LC; Wen S; Yan H; Hsi WC Radiat Oncol; 2017 Aug; 12(1):132. PubMed ID: 28810881 [TBL] [Abstract][Full Text] [Related]
11. Fast Biological Modeling for Voxel-based Heavy Ion Treatment Planning Using the Mechanistic Repair-Misrepair-Fixation Model and Nuclear Fragment Spectra. Kamp F; Cabal G; Mairani A; Parodi K; Wilkens JJ; Carlson DJ Int J Radiat Oncol Biol Phys; 2015 Nov; 93(3):557-68. PubMed ID: 26460998 [TBL] [Abstract][Full Text] [Related]
12. Conversion and validation of rectal constraints for prostate carcinoma receiving hypofractionated carbon-ion radiotherapy with a local effect model. Wang W; Li P; Sheng Y; Huang Z; Zhao J; Hong Z; Shahnazi K; Jiang GL; Zhang Q Radiat Oncol; 2021 Apr; 16(1):72. PubMed ID: 33849589 [TBL] [Abstract][Full Text] [Related]
13. Four-dimensional treatment planning in layer-stacking boost irradiation for carbon-ion pancreatic therapy. Mori S; Shinoto M; Yamada S Radiother Oncol; 2014 May; 111(2):258-63. PubMed ID: 24746568 [TBL] [Abstract][Full Text] [Related]
14. Preliminary calculation of RBE-weighted dose distribution for cerebral radionecrosis in carbon-ion treatment planning. Kase Y; Himukai T; Nagano A; Tameshige Y; Minohara S; Matsufuji N; Mizoe J; Fossati P; Hasegawa A; Kanai T J Radiat Res; 2011; 52(6):789-96. PubMed ID: 21921434 [TBL] [Abstract][Full Text] [Related]
15. RBE-weighted doses in target volumes of chordoma and chondrosarcoma patients treated with carbon ion radiotherapy: Comparison of local effect models I and IV. Gillmann C; Jäkel O; Karger CP Radiother Oncol; 2019 Dec; 141():234-238. PubMed ID: 31522880 [TBL] [Abstract][Full Text] [Related]
16. Feasibility of dynamic adaptive passive scattering proton therapy with computed tomography image guidance in the lung. Moriya S; Tachibana H; Hotta K; Nakamura N; Sakae T; Akimoto T Med Phys; 2017 Sep; 44(9):4474-4481. PubMed ID: 28665491 [TBL] [Abstract][Full Text] [Related]
17. The sensitivity of radiobiological models in carbon ion radiotherapy (CIRT) and its consequences on the clinical treatment plan: Differences between LEM and MKM models. Góra J; Grosshagauer S; Fossati P; Mumot M; Stock M; Schafasand M; Carlino A J Appl Clin Med Phys; 2024 Jul; 25(7):e14321. PubMed ID: 38436509 [TBL] [Abstract][Full Text] [Related]
18. Temporal lobe reactions after carbon ion radiation therapy: comparison of relative biological effectiveness-weighted tolerance doses predicted by local effect models I and IV. Gillmann C; Jäkel O; Schlampp I; Karger CP Int J Radiat Oncol Biol Phys; 2014 Apr; 88(5):1136-41. PubMed ID: 24661667 [TBL] [Abstract][Full Text] [Related]