These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 25933174)
1. Physical-chemical properties and evaluative fate modelling of 'emerging' and 'novel' brominated and organophosphorus flame retardants in the indoor and outdoor environment. Liagkouridis I; Cousins AP; Cousins IT Sci Total Environ; 2015 Aug; 524-525():416-26. PubMed ID: 25933174 [TBL] [Abstract][Full Text] [Related]
2. Estimation of physicochemical properties of 52 non-PBDE brominated flame retardants and evaluation of their overall persistence and long-range transport potential. Kuramochi H; Takigami H; Scheringer M; Sakai S Sci Total Environ; 2014 Sep; 491-492():108-17. PubMed ID: 24802073 [TBL] [Abstract][Full Text] [Related]
3. Brominated and organophosphorus flame retardants in South African indoor dust and cat hair. Brits M; Brandsma SH; Rohwer ER; De Vos J; Weiss JM; de Boer J Environ Pollut; 2019 Oct; 253():120-129. PubMed ID: 31302398 [TBL] [Abstract][Full Text] [Related]
4. A review of the analysis of novel brominated flame retardants. Papachlimitzou A; Barber JL; Losada S; Bersuder P; Law RJ J Chromatogr A; 2012 Jan; 1219():15-28. PubMed ID: 22172654 [TBL] [Abstract][Full Text] [Related]
5. Occurrence of alternative flame retardants in indoor dust from New Zealand: indoor sources and human exposure assessment. Ali N; Dirtu AC; Van den Eede N; Goosey E; Harrad S; Neels H; 't Mannetje A; Coakley J; Douwes J; Covaci A Chemosphere; 2012 Sep; 88(11):1276-82. PubMed ID: 22551874 [TBL] [Abstract][Full Text] [Related]
6. Flame retardant emission from e-waste recycling operation in northern Vietnam: environmental occurrence of emerging organophosphorus esters used as alternatives for PBDEs. Matsukami H; Tue NM; Suzuki G; Someya M; Tuyen le H; Viet PH; Takahashi S; Tanabe S; Takigami H Sci Total Environ; 2015 May; 514():492-9. PubMed ID: 25701386 [TBL] [Abstract][Full Text] [Related]
7. Pilot-scale incineration of wastes with high content of chlorinated and non-halogenated organophosphorus flame retardants used as alternatives for PBDEs. Matsukami H; Kose T; Watanabe M; Takigami H Sci Total Environ; 2014 Sep; 493():672-81. PubMed ID: 24992460 [TBL] [Abstract][Full Text] [Related]
8. Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis. van der Veen I; de Boer J Chemosphere; 2012 Aug; 88(10):1119-53. PubMed ID: 22537891 [TBL] [Abstract][Full Text] [Related]
9. Phasing-out of legacy brominated flame retardants: The UNEP Stockholm Convention and other legislative action worldwide. Sharkey M; Harrad S; Abou-Elwafa Abdallah M; Drage DS; Berresheim H Environ Int; 2020 Nov; 144():106041. PubMed ID: 32822924 [TBL] [Abstract][Full Text] [Related]
10. Novel brominated flame retardants: a review of their analysis, environmental fate and behaviour. Covaci A; Harrad S; Abdallah MA; Ali N; Law RJ; Herzke D; de Wit CA Environ Int; 2011 Feb; 37(2):532-56. PubMed ID: 21168217 [TBL] [Abstract][Full Text] [Related]
11. Priority and emerging flame retardants in rivers: occurrence in water and sediment, Daphnia magna toxicity and risk assessment. Cristale J; García Vázquez A; Barata C; Lacorte S Environ Int; 2013 Sep; 59():232-43. PubMed ID: 23845937 [TBL] [Abstract][Full Text] [Related]
12. A low-volume air sampling method for legacy and novel brominated flame retardants in indoor environment using a newly developed sorbent mixture. Wang Y; Yang X; Liu Y; Zhang Q; Xiao H; Wang Y; Yao Y; Sun H Ecotoxicol Environ Saf; 2021 Mar; 210():111837. PubMed ID: 33422837 [TBL] [Abstract][Full Text] [Related]
13. Legacy and emerging flame retardants (FRs) in the freshwater ecosystem: A review. Iqbal M; Syed JH; Katsoyiannis A; Malik RN; Farooqi A; Butt A; Li J; Zhang G; Cincinelli A; Jones KC Environ Res; 2017 Jan; 152():26-42. PubMed ID: 27741446 [TBL] [Abstract][Full Text] [Related]
14. Emissions and fate of brominated flame retardants in the indoor environment: a critical review of modelling approaches. Liagkouridis I; Cousins IT; Cousins AP Sci Total Environ; 2014 Sep; 491-492():87-99. PubMed ID: 24568748 [TBL] [Abstract][Full Text] [Related]
15. Brominated flame retardants (BFRs): A review on environmental contamination in China. Yu G; Bu Q; Cao Z; Du X; Xia J; Wu M; Huang J Chemosphere; 2016 May; 150():479-490. PubMed ID: 26725304 [TBL] [Abstract][Full Text] [Related]
16. Brominated flame retardants in house dust from e-waste recycling and urban areas in South China: implications on human exposure. Wang J; Ma YJ; Chen SJ; Tian M; Luo XJ; Mai BX Environ Int; 2010 Aug; 36(6):535-41. PubMed ID: 20452672 [TBL] [Abstract][Full Text] [Related]
17. Novel flame retardants: Estimating the physical-chemical properties and environmental fate of 94 halogenated and organophosphate PBDE replacements. Zhang X; Sühring R; Serodio D; Bonnell M; Sundin N; Diamond ML Chemosphere; 2016 Feb; 144():2401-7. PubMed ID: 26613357 [TBL] [Abstract][Full Text] [Related]
18. Brominated flame retardants (BFRs) in indoor and outdoor air in a community in Guangzhou, a megacity of southern China. Ding N; Wang T; Chen SJ; Yu M; Zhu ZC; Tian M; Luo XJ; Mai BX Environ Pollut; 2016 May; 212():457-463. PubMed ID: 26952274 [TBL] [Abstract][Full Text] [Related]
19. Occurrence of flame retardants in landfills: A case study in Brazil. Cristale J; Aragão Belé TG; Lacorte S; de Marchi MRR Environ Res; 2019 Jan; 168():420-427. PubMed ID: 30388499 [TBL] [Abstract][Full Text] [Related]
20. Assessing the persistence, bioaccumulation potential and toxicity of brominated flame retardants: data availability and quality for 36 alternative brominated flame retardants. Stieger G; Scheringer M; Ng CA; Hungerbühler K Chemosphere; 2014 Dec; 116():118-23. PubMed ID: 24656972 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]