These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 25933316)

  • 1. Theory of two threshold fields for relativistic runaway electrons.
    Aleynikov P; Breizman BN
    Phys Rev Lett; 2015 Apr; 114(15):155001. PubMed ID: 25933316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental observation of increased threshold electric field for runaway generation due to synchrotron radiation losses in the FTU Tokamak.
    Martín-Solís JR; Sánchez R; Esposito B
    Phys Rev Lett; 2010 Oct; 105(18):185002. PubMed ID: 21231111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation of the avalanche of runaway electrons in air in a strong electric field.
    Gurevich AV; Mesyats GA; Zybin KP; Yalandin MI; Reutova AG; Shpak VG; Shunailov SA
    Phys Rev Lett; 2012 Aug; 109(8):085002. PubMed ID: 23002751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatiotemporal Evolution of Runaway Electron Momentum Distributions in Tokamaks.
    Paz-Soldan C; Cooper CM; Aleynikov P; Pace DC; Eidietis NW; Brennan DP; Granetz RS; Hollmann EM; Liu C; Lvovskiy A; Moyer RA; Shiraki D
    Phys Rev Lett; 2017 Jun; 118(25):255002. PubMed ID: 28696735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the relativistic runaway electron avalanche and the feedback mechanism with GEANT4.
    Skeltved AB; Østgaard N; Carlson B; Gjesteland T; Celestin S
    J Geophys Res Space Phys; 2014 Nov; 119(11):9174-9191. PubMed ID: 26167437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Kinetic Instability in Runaway-Electron Avalanches and Elevated Critical Electric Fields.
    Liu C; Hirvijoki E; Fu GY; Brennan DP; Bhattacharjee A; Paz-Soldan C
    Phys Rev Lett; 2018 Jun; 120(26):265001. PubMed ID: 30004735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new perspective on synchrotron radiation applications: Runaway electrons studies using a hard x-ray detection in tokamaks.
    Ghanbari K; Salar Elahi A; Ghoranneviss M
    J Xray Sci Technol; 2017; 25(1):15-23. PubMed ID: 27662276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective critical electric field for runaway-electron generation.
    Stahl A; Hirvijoki E; Decker J; Embréus O; Fülöp T
    Phys Rev Lett; 2015 Mar; 114(11):115002. PubMed ID: 25839283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toroidal runaway beams.
    Fussmann G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013105. PubMed ID: 23410444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A confident source of hard X-rays: radiation from a tokamak applicable for runaway electrons diagnosis.
    Kafi M; Salar Elahi A; Ghoranneviss M; Ghanbari MR; Salem MK
    J Synchrotron Radiat; 2016 Sep; 23(Pt 5):1227-31. PubMed ID: 27577779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relativistic runaway ionization fronts.
    Luque A
    Phys Rev Lett; 2014 Jan; 112(4):045003. PubMed ID: 24580462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of bremsstrahlung radiation in limiting the energy of runaway electrons in tokamaks.
    Bakhtiari M; Kramer GJ; Takechi M; Tamai H; Miura Y; Kusama Y; Kamada Y
    Phys Rev Lett; 2005 Jun; 94(21):215003. PubMed ID: 16090329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulating the nonlinear interaction of relativistic electrons and tokamak plasma instabilities: Implementation and validation of a fluid model.
    Bandaru V; Hoelzl M; Artola FJ; Papp G; Huijsmans GTA
    Phys Rev E; 2019 Jun; 99(6-1):063317. PubMed ID: 31330586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. x-ray irradiation analysis based on wavelet transform in tokamak plasma.
    Ghanbari K; Ghoranneviss M; Elahi AS; Saviz S
    J Xray Sci Technol; 2014; 22(6):777-83. PubMed ID: 25408394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current dynamics during disruptions in large tokamaks.
    Eriksson LG; Helander P; Andersson F; Anderson D; Lisak M
    Phys Rev Lett; 2004 May; 92(20):205004. PubMed ID: 15169362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface protection from high energy electrons and X-ray radiation analysis in tokamak plasma.
    Salar Elahi A; Ghoranneviss M
    J Xray Sci Technol; 2017; 25(5):777-785. PubMed ID: 28550269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of runaway electrons by resonant magnetic perturbations in TEXTOR disruptions.
    Lehnen M; Bozhenkov SA; Abdullaev SS; ; Jakubowski MW
    Phys Rev Lett; 2008 Jun; 100(25):255003. PubMed ID: 18643669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scale size of magnetic turbulence in tokamaks probed with 30-MeV electrons.
    Entrop I; Lopes Cardozo NJ ; Jaspers R; Finken KH
    Phys Rev Lett; 2000 Apr; 84(16):3606-9. PubMed ID: 11019157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First Direct Observation of Runaway-Electron-Driven Whistler Waves in Tokamaks.
    Spong DA; Heidbrink WW; Paz-Soldan C; Du XD; Thome KE; Van Zeeland MA; Collins C; Lvovskiy A; Moyer RA; Austin ME; Brennan DP; Liu C; Jaeger EF; Lau C
    Phys Rev Lett; 2018 Apr; 120(15):155002. PubMed ID: 29756886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced production of runaway electrons during a disruptive termination of discharges heated with lower hybrid power in the Frascati Tokamak Upgrade.
    Martín-Solís JR; Esposito B; Sánchez R; Poli FM; Panaccione L
    Phys Rev Lett; 2006 Oct; 97(16):165002. PubMed ID: 17155404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.